Techno Press
Tp_Editing System.E (TES.E)
Login Search


cac
 
CONTENTS
Volume 2, Number 1, February 2005
 

Abstract
This paper presents a study on the effects of localized steel-concrete bond degradation on the flexural behaviour of RC beams. A finite element analysis is undertaken to complete the experimental analysis. The first part deals with an experimental study on beams where bond was removed by using plastic tube at different locations and for various lengths. The flexural behaviour was studied at global scale (load-deflection) and local scale (moment-curvature). The second part, a numerical study using a simplified special finite element (rust element) modelling the rust layer occurring between reinforcement and concrete with corrosion was conducted in order to find the relation between the degree of corrosion and the degradation of the steel-concrete bond. The computed value of the corrosion degree corresponding to the total degradation of bond has been used in a second time to model the tests, in order to evaluate the influence of the loss of bond, the steel cross section reduction, and the combination of both. The results enable to evaluate the influence of the different corrosion effects on the flexural behaviour, according to the length and the location of the corroded zone.

Key Words
concrete; reinforcement corrosion; steel-concrete bond; rust element.

Address
Olivier Maurel; Universite de Reims, Champagne - Ardenne, FrancernMickael Dekoster and Francois Buyle-Bodin; Universite des Sciences et Technologies de Lille, USTL-LML, Cite Scienfique, 59655 Villeneuve d\'Ascq, France

Abstract
We study the kinetics of absorption of water in Portland cement concretes added with 60, 70 and 80% of granulated blast furnace slag (GGBS) cured in water and at open air and preheated at 50 and 100oC. A mathematical model is presented that allows describing the process not only in early ages where the capillary sorption is predominant but also for later and long times where the diffusive processes through the finer and gel pores are considered. The fitting of the model by computerized methods enablesrnus to determine the parameters that characterize the process: i.e., the sorptivity coefficient (S) and diffusion coefficient (D). This allows the description of the process for all times and offers the possibility to know the contributions of both, the diffusive and capillary processes. The results show the influence of the curing regime and the preheating temperature on the behavior of GGBS mortars.

Key Words
modeling, kinetics, water transport, capillarity, diffusion, GGBS concretes.

Address
modeling; kinetics; water transport; capillarity; diffusion; GGBS concretes.

Abstract
In the present structural codes the safety verification is based on a linear analysis of the structure and the satisfaction of ultimate and serviceability limit states, using a semi-probabilistic security format through the consideration of partial safety factors, which affect the action values and the characteristic values of the material properties. In this context, if a non-linear structural analysis is wanted a difficulty arises, because the global safety coefficient, which could be obtained in a straightforward way from the non-linear analysis, is not directly relatable to the different safety coefficient values usually used for the different materials, as is the case for reinforced concrete structures. The work here presented aims to overcome this difficulty by proposing a methodology that generalises the format of safety verification based on partial safety factors, well established in structural codes within the scope of linear analysis, for cases where non-linear analysis is needed. The methodology preserves the principal assumptions made in the codes as well as a reasonable simplicity in its use, including a realistic definition of the material properties and the structural behaviour, and it is based on the evaluation of a global safety coefficient. Some examples are presented aiming to clarify and synthesise all the options that were taken in the application of the proposed methodology, namely how to transpose the force distributions obtained with a non-linear analysis into design force distributions. One of the most important features of the proposed methodology, the ability for comparing the simplified procedures for second order effects evaluation prescribed in the structural codes, is also presented in a simple and systematic way. The potential of the methodology for the development and assessment of alternative and more accurate procedures to those

Key Words
structural safety; non-linear analysis; safety factors; assessment of codes; safety verification; second order effects; reinforced concrete frames.

Address
Paula M. R. P. Castro; Faculty of Architecture, Porto University, Rua da Golgota, Porto, PortugalrnRaimundo M. Delgado and Jose M. A. Cesar de Sa; Faculty of Engineering, Porto University, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal

Abstract
The closed form solution of the equilibrium equations in the ultimate design of reinforced concrete sections under biaxial bending is presented. The stresses in the materials are described by the Model Code 1990 equations. Computation of the integral equations is performed generally in terms of all variables. The deformed shape of the section in the ultimate conditions is defined by Heaviside functions. The procedure is convenient for the use of mathematical manipulation programs and the results are easily included into nonlinear analysis codes. The equations developed for rectangular sections can be applied for other sections, such as T, L, I for instance, by decomposition into rectangles. Numerical examples of the developed model for rectangular sections and composed sections are included.

Key Words
biaxial bending; closed form; nonlinear design code; heaviside functions; reinforced concrete; model code 1990.

Address
M. H. F. M. Barros and C. C. Ferreira; Civil Engineering Department, F. C. T., University of Coimbra, Polo II, 3030 Coimbra, PortugalrnA. F. M. Barros; IDMEC/IST, Mechanical Engineering Department, I. S. T., Lisbon, Portugal

Abstract
The use of high-strength concrete (HSC) has significantly increased over the last decade, especially in offshore structures, long-span bridges, and tall buildings. The behavior of such concrete is noticeably different from that of normal-strength concrete (NSC) due to its different microstructure and mode of failure. In particular, the shear capacity of structural members made of HSC is a concern and must be carefully evaluated. The shear fracture surface in HSC members is usually trans-granular (propagates across coarse aggregates) and is therefore smoother than that in NSC members, which reduces the effect of shear transfer mechanisms through aggregate interlock across cracks, thus reducing the ultimate shear strength. Current code provisions for shear design are mainly based on experimental results obtained on NSC members having compressive strength of up to 50MPa. The validity of such methods to calculate the shear strength of HSC members is still questionable. In this study, a new approach based on artificial neural networks (ANNs) was used to predict the shear capacity of NSC and HSC beams without shear reinforcement. Shear capacities predicted by the ANN model were compared to those of five other methods commonly used in shear investigations: the ACI method, the CSA simplified method, Response 2000, Eurocode-2, and Zsutty\'s method. A sensitivity analysis was conducted to evaluate the ability of ANNs to capture the effect of main shear design parameters (concrete compressive strength, amount of longitudinal reinforcement, beam size, and shear span to depth ratio) on the shear capacity of reinforced NSC and HSC beams. It was found that the ANN model outperformed all other considered methods, providing more accurate results of shear capacity, and better capturing the effect of basic shear design parameters. Therefore, it offers an efficient alternative to evaluate the shear capacity of NSC and HSC members without stirrups.

Key Words
artificial intelligence; analysis; aggregate interlock; concrete; high-strength; prediction; shear.

Address
Department of Civil and Environmental EngineeringrnThe University of Western Ontario, London, Ontario, Canada, N6A 5B9


Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2017 Techno-Press
P.O. Box 33, Yuseong, Daejeon 34186 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: info@techno-press.com