Techno Press
Tp_Editing System.E (TES.E)
Login Search


mwt
 
CONTENTS
Volume 7, Number 1, January 2016
 

Abstract
Ultrafiltration is known to be one of the most commonly applied techniques in water treatment. Membrane fouling is the main limiting factor in terms of process efficiency and restricting it to the manageable degree is crucial. Natural organic matter is often found to be a major foulant in surface waters. Among many known fouling prevention techniques, the membrane chemical cleaning is widely employed. This study focuses on evaluating the cleaning efficiency of polymeric and ceramic membranes with the use of various chemicals. The influence of cleaning agent type and its concentration, membrane material and its MWCO, and cleaning process duration on the recovery of membrane flux was analyzed. Results have shown that, regardless of membrane type and MWCO, the most effective cleaning agent was NaOH.

Key Words
ultrafiltration; polymeric membrane; ceramic membrane; natural organic matter; fouling; chemical cleaning

Address
Department of Environmental Engineering, Institute of Environment Protection Engineering, Wrocław University of Technology, Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław, Poland.


Abstract
The characterization of treatment performance with respect to mixed liquor suspended solids (MLSS) concentration enables greater control over system performance and contaminant removal efficiency. Hybrid membrane bioreactors (HMBRs) have yet to be well characterized in this regard, particularly in the context of greywater treatment. The aim of this study, therefore, was to determine the optimal MLSS concentration for a decentralized HMBR greywater reclamation system under typical loading conditions. Treatment performance was measured at MLSS concentrations ranging from 1000 to 4000 mg/L. The treated effluent was characterized in terms of biochemical oxygen demand (BOD5), chemical oxygen demand (COD), turbidity, ammonia (NH3), total phosphorus (TP), total kjeldahl nitrogen (TKN), and total nitrogen (TN). An MLSS concentration ranging from 3000 to 4000 mg/L yielded optimal results, with BOD5, COD, turbidity, NH3, TP, TKN, and TN removals reaching 99.2%, 97.8%, 99.8%, 99.9%, 97.9%, 95.1%, and 44.8%, respectively. The corresponding food-to-microorganism ratio during these trials was approximately 0.23 to 0.28. Operation at an MLSS concentration of 1000 mg/L resulted in an irrecoverable loss of floc, and contaminant residuals exceeded typical guideline values for reuse in non-potable water applications. Therefore, it is suggested that operation at or below this threshold be avoided.

Key Words
greywater reclamation; hybrid membrane bioreactor; membrane bioreactor; mixed liquor suspended solids

Address
Department of Environmental Systems Engineering, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, Canada.

Abstract
Batch adsorption of methyl orange (MO) from aqueous solution using three kinds of anion exchange membranes BI, BIII and DF-120B having different ion exchange capacities (IECs) and water uptakes (WR) was investigated at room temperature. The FTIR spectra of anion exchange membranes was analysed before and after the adsorption of MO dye to investigate the intractions between dye molecules and anion exchange membranes. The effect of various parameters such as contact time, initial dye concentration and molarity of NaCl on the adsorption capacity was studied. The adsorption capacity found to be increased with contact time and initial dye concentration but decreased with ionic strength. The adsorption of MO on BI, BIII and DF-120B followed pseudo-first-order kinetics and the nonlinear forms of Freundlich and Langmuir were used to predict the isotherm parameters. This study demonstrates that anion exchange membranes could be used as useful adsorbents for removal of MO dye from wastewater.

Key Words
adsorption; anion exchange membrane; methyl orange; langmuir isotherm; freundlich isotherm

Address
CAS Key Laboratory of Soft Matter Chemistry, Lab of Functional Membranes, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China.


Abstract
In this study, polysufone (PSf) was used as a base polymer to synthesize sulfonated polysulfone (SPSf) and aminated polysulfone (APSf) as cation and anion exchange polymers, respectively. Then the ion exchange polymers were coated onto the surface of commercial carbon electrodes. To compare the capacitive deionization (CDI) and membrane capacitive deionization (MCDI) processes, the pristine carbon electrodes and ionic polymer coated electrodes were tested under various operating conditions such as feed flow rate, adsorption time at fixed desorption time, and feed concentration, etc., in terms of effluent concentration and salt removal efficiency. The MCDI was confirmed to be superior to the CDI process. The performance of MCDI was 2-3 times higher than that of CDI. In particular, the reverse desorption potential was a lot better than zero potential. Typically, the salt removal efficiency 100% for 100 mg/L NaCl was obtained for MCDI at feed flow rate of 15 ml/min and adsorption/ desorption time of 3 min/1 min and applied voltages 1.0 V for adsorption and -0.3 V for desorption process, and for 500 mg/L, the salt removal efficiency 91% was observed.

Key Words
sulfonated polysulfone (SPSf); aminated polysulfone (APSf); capacitive deionization (CDI); membrane capacitive deionization (MCDI); salt removal efficiency; effluent concentration

Address
Department of New Materials and Chemical Engineering, Hannam University, 1646 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Republic of Korea.

Abstract
Microfiltration/ultrafiltration (MF/UF) Adsorptive polyamide-6 (PA-6) membranes were prepared using wet phase inversion process. The prepared PA-6 membranes are characterized by scanning electron microscopy (SEM), porosity and swelling degree. In this study, the membranes performance has examined by adsorptive removal of copper ions from aqueous solutions in a batch adsorption mode. The PA-6/H2O membranes display sponge like and highly porous structures, with porosities of 41-73%. Under the conditions examined, the adsorption experiments have showed that the PA-6/H2O membranes had a good adsorption capacity (up to 120-280 mg/g at the initial copper ion concentration (C0) = 680 mg/L, pH7), fast adsorption rates and short adsorption equilibrium times (less than 1.5-2 hrs) for copper ions. The fast adsorption in this study may be attributed to the high porosities and large pore sizes of the PA-6/H2O membranes, which have facilitated the transport of copper ions to the adsorption. The results obtained from the study illustrated that the copper ions which have adsorbed on the polyamide membranes can be effectively desorbed in an Ethylene dinitrilotetra acetic acid Di sodium salt (Na2 EDTA) solution from initial concentration (up to 92% desorption efficiency) and the PA-6 membranes can be reused almost without loss of the adsorption capacity for copper ions. The results obtained from the study suggested that the PA-6/H2O membranes can be effectively applied for the adsorptive removal of copper ions from aqueous solutions.

Key Words
adsorptive membrane; preparation PA-6; copper removal; desorption

Address
Chem. Eng. & Pilot Plant Dept., Eng. Research Division, National Research Center, El Buhouth St., P.O. box 12622, Dokki, Giza, Egypt.

Abstract
The present study deals with a numerical simulation for the transport phenomena in three configurations of Membrane Distillation (Air Gap, Direct Contact and Sweeping Gas Membrane Distillation) usually used for desalination in order to make an objective comparison between them under the same operating conditions. The models are based on the conservation equations for the mass, momentum, energy and species within the feed saline and cooling solutions as well as on the mass and energy balances on the membrane sides. The theoretical model was validated with available data and was found in good agreement. DCMD configuration provided the highest pure water production while SGMD shows the highest thermal efficiency. Process parameters\' impact on each configuration are also presented and discussed.

Key Words
desalination; membrane distillation; air gap; direct contact; sweeping gas

Address
(1) Nizar Loussif:
Ecole Nationale d'Ingènieur de Monastir, Universitè de Monastir, Monastir, Tunisia;
(2) Nizar Loussif:
Unitè de Recherche Matèriaux, Energie et Energies Renouvelables, Facultè des Sciences Gafsa, Universitè de Gafsa, 2100 Gafsa, Tunisia;
(3) Jamel Orfi:
Department of Mechanical Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia.


Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2017 Techno-Press
P.O. Box 33, Yuseong, Daejeon 34186 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: info@techno-press.com