Techno Press
Tp_Editing System.E (TES.E)
Login Search
You logged in as

ose
 
CONTENTS
Volume 6, Number 2, June 2016
 


Abstract
Due to the structural complexity, the response of a flexible riser under axisymmetric loads is quite difficult to determine. Based on equilibrium conditions, geometrical relations and constitutive equations, an analytical model that can accurately predict the axisymmetric behavior of flexible risers is deduced in this paper. Since the mutual exclusion between the contact pressure and interlayer gap is considered in this model, the influence of the load direction on the structural behavior can be analyzed. Meanwhile, a detailed finite element analysis for unbonded flexible risers is conducted. Based on the analytical and numerical models, the structural response of a typical flexible riser under tension, torsion, internal and outer pressure has been studied in detail. The results are compared with experimental data obtained from the literature, and good agreement is found. Studies have shown that the proposed analytical and numerical models can provide an insightful reference for analysis and design of flexible risers.

Key Words
flexible riser; axisymmetric response; analytical model; numerical model; gap between the layers

Address
Yousong Guo and Deyu Wang: State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Min Hang, Shanghai, China
Xiqia Chen: Tianjin Branch, CNOOC Ltd, Tianjin, China

Abstract
Cargo, such as a Tension Leg Platform (TLP), Semi-submersible platform (Semi), Spar or a circular Floating Production Storage and Offloading (FPSO), are frequently dry-transported on a Heavy Lift Vessel (HLV) from the point of construction to the point of installation. The voyage can span months and the overhanging portions of the hull can be subject to frequent wave slamming events in rough weather. Tie-downs or sea-fastening are usually provided to ensure the safety of the cargo during the voyage and to keep the extreme responses of the cargo, primarily for the installed equipment and facilities, within the design limits. The proper design of the tie-down is dependent on the accurate prediction of the wave slamming loads the cargo will experience during the voyage. This is a difficult task and model testing is a widely accepted and adopted method to obtain reliable sea-fastening loads and extreme accelerations. However, it is crucial to realize the difference in the inherent stiffness of the instrument that is used to measure the tri-axial sea fastening loads and the prototype design of the tie-downs. It is practically not possible to scale the tri-axial load measuring instrument stiffness to reflect the real tie-down stiffness during tests. A correlation method is required to systematically and consistently account for the stiffness differences and correct the measured results. Direct application of the measured load tends to be conservative and lead to over-design that can reflect on the overall cost and schedule of the project. The objective here is to employ the established correlation method to provide proper high-frequency responses to topsides and hull design teams. In addition, guidance for optimizing tie-down design to avoid damage to the installed equipment, facilities and structural members can be provided.

Key Words
wave slamming; impulsive response function; sea-fastening; high-frequency responses; dry transport; optimization of tie-down design and correlation method

Address
Vimal Vinayanand Jun Zou: Houston Offshore Engineering, An Atkins Company, Houston, TX, USA

Abstract
This paper provides a practical stochastic method by which the maximum equilibrium scour depth around a vertical pile exposed to random waves plus a current on mild slopes can be derived. The approach is based on assuming the waves to be a stationary narrow-band random process, adopting the Battjes and Groenendijk (2000) wave height distribution for mild slopes including the effect of breaking waves, and using the empirical formulas for the scour depth on the horizontal seabed by Sumer and Freds e (2002). The present approach is valid for wave-dominant flow conditions. Results for random waves alone and random wave plus currents have been presented and discussed by varying the seabed slope and water depth. An approximate method is also proposed, and comparisons are made with the present stochastic method. For random waves alone it appears that the approximate method can replace the stochastic method, whereas the stochastic method is required for random waves plus currents. Tentative approaches to related random wave-induced scour cases on mild slopes are also suggested.

Key Words
scour depth; vertical pile; mild slope; random waves; current; stochastic method

Address
Muk Chen Ong: Department of Mechanical and Structural Engineering and Materials Science, University of Stavanger
Stavanger, Norway
Dag Myrhaug and Ping Fu: Department of Marine Technology, Norwegian University of Science and Technology Trondheim, Norway

Abstract
Stern bearing is a key component of marine propulsion plant. Its environment is diverse, working condition changeable, and condition severe, so that stern bearing load is of strong time variability, which directly affects the safety and reliability of the system and the normal navigation of ships. In this paper, three affecting factors of the stern bearing load such as hull deformation, propeller hydrodynamic vertical force and bearing wear are calculated and characterized by random theory. The uncertainty mathematical model of stern bearing load is established to research the relationships between factors and uncertainty load of stern bearing. The validity of calculation mathematical model and results is verified by examples and experiment yet. Therefore, the research on the uncertainty load of stern bearing has important theoretical significance and engineering practical value.

Key Words
stern bearing; uncertainty model; random theory; stochastic theory; improved transition matrix method

Address
Sheng dong Zhang: School of Mechanical and Materials Engineering, Jiujiang University, Jiujiang 332005, P.R. China
Zheng lin Liu: School of Energy and Power Engineering Wuhan University of Technology, Wuhan, Hubei Province, 430063, P.R. China


Abstract
Over recent years the offshore wind turbines are becoming more feasible solution to the energy problem, which is crucial for Egypt. In this article a three floating support structure, tension leg platform types (TLP), for 5-MW wind turbine have been considered. The dynamic behavior of a triangular, square, and pentagon TLP configurations under multi-directional regular and random waves have been investigated. The environmental loads have been considered according to the Egyptian Metrological Authority records in northern Red sea zone. The dynamic analysis were carried out using ANSYS-AQWA a finite element analysis software, FAST a wind turbine dynamic software, and MATLAB software. Investigation results give a better understanding of dynamical behavior and stability of the floating wind turbines. Results include time history, Power Spectrum densities (PSD\'s), and plan stability for all configurations.

Key Words
dynamic response; offshore wind turbines; tension leg platform; wave forces

Address
Ashraf M. Abou-Rayan, Nader N. Khalil and Mohamed S. Afify: Department of Civil Engineering, Faculty of Engineering Benha, Banha University, Benha Aljadida, P.O. Box: 13512, Al Qalyubiyah, Egypt



Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2024 Techno-Press ALL RIGHTS RESERVED.
P.O. Box 33, Yuseong, Daejeon 34186 Korea, Email: info@techno-press.com