Techno Press
Tp_Editing System.E (TES.E)
Login Search


scs
 
CONTENTS
Volume 10, Number 1, February 2010
 

Abstract
As an alternative for conventional structures for tall buildings, a hybrid lateral load resisting structure has been designed, enabling the assembly of tall buildings directly from a truck. It consists of steel frames with discretely connected precast concrete infill panels provided with window openings. Besides the stiffening and strengthening effect of the infill panels on the frame structure, economical benefits may be derived from saving costs on materials and labour, and from reducing construction time. In order to develop design rules for this type of structure, the hybrid infilled frame has recently been subjected to experimental and numerical analyses. Ten full-scale tests were performed on one-storey, one-bay, 3 by 3 m infilled frame structures, having different window opening geometries. Subsequently, the response of the full-scale experiments was simulated with the finite element program DIANA. The finite element simulations were performed taking into account non-linear material characteristics and geometrical non-linearity. The experiments show that discretely connected precast concrete panels provided with a window opening, can significantly improve the performance of steel frames. A comparison between the full-scale experiments and simulations shows that the finite element models enable simulating the elastic and plastic behaviour of the hybrid infilled frame.

Key Words
infilled frame; steel; precast concrete; lateral resistance; experiments; finite element analysis.

Address
P.A. Teeuwen, C.S. Kleinman, H.H. Snijder and H. Hofmeyer; Eindhoven University of Technology, Eindhoven, the Netherlands

Abstract
In this paper, a nonlinear model is developed using the component method in order to represent the response of steel connections under various loading conditions and temperature variations. The model is capable of depicting the behaviour of a number of typical connection types including endplate forms (extended and flush) and angle configurations (double web, top and seat, and combined top-seat-web) in both steel and composite framed structures. The implementation is undertaken within the finite element program ADAPTIC, which accounts for material and geometric nonlinearities. Verification of the proposed connection model is carried out by comparing analytical simulations with available results of isolated joint tests for the ambient case, and isolated joint as well as sub-frame tests for elevated temperature conditions. The findings illustrate the reliability and efficiency of the proposed model in capturing the stiffness and strength properties of connections, hence highlighting the adequacy of the component approach in simulating the overall joint behaviour at elevated temperature.

Key Words
beam-to-column connections; elevated temperature; non-linear finite element analysis; component method.

Address
N.H. Ramli Sulong; Department of Civil Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
A.Y. Elghazouli; Department of Civil and Environmental Engineering, Imperial College London, SW7 2BU, UK
B.A. Izzuddin; Department of Civil and Environmental Engineering, Imperial College London, SW7 2BU, UK
N. Ajit; Department of Civil Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia

Abstract
Composite steel-concrete structures are employed extensively in modern high rise buildings and bridges. This concept has achieved wide spread acceptance because it guarantees economic benefits attributable to reduced construction time and large improvements in stiffness. Even though the combination of steel and concrete enhances the strength and stiffness of composite beams, the time-dependent behaviour of concrete may weaken the strength of the shear connection. When the concrete loses its strength, it will transfer its stresses to the structural steel through the shear studs. This behaviour will reduce the strength of the composite member. This paper presents the development of an accurate finite element model using ABAQUS to study the behaviour of shear connectors in push tests incorporating the time-dependent behaviour of concrete. The structure is modelled using three-dimensional solid elements for the structural steel beam, shear connectors, concrete slab and profiled steel sheeting. Adequate care is taken in the modelling of the concrete behaviour when creep is taken into account owing to the change in the elastic modulus with respect to time. The finite element analyses indicated that the slip ductility, the strength and the stiffness of the composite member were all reduced with respect to time. The results of this paper will prove useful in the modelling of the overall composite beam behaviour. Further experiments to validate the models presented herein will be conducted and reported at a later stage.

Key Words
composite steel-concrete beams; creep; shrinkage; finite element analysis; long term behaviour.

Address
O. Mirza and B. Uy; School of Engineering, University of Western Sydney, Locked Bag 1797 Penrith South DC,NSW 1797, Australia

Abstract
The present paper presents a study on the behavior and design of corrugated web steel beams with and without web openings. In the literature, the web opening problem in steel beams was dealt with mostly for steel beams with plane web plates and research on the effect of an opening on a corrugated web was found out to be very limited. The present study deals mainly with the effect of web openings on the transverse load carrying capacity of steel beams with sinusoidally corrugated webs. A general purpose finite element program (ABAQUS) was used. Simply supported corrugated web beams of 2 m length and with circular web openings at quarter span points were considered. These points are generally considered to be the optimum locations of web openings for steel beams. Various cases were analyzed including the size of the openings and the corrugation density which is a function of the magnitude and length of the sine wave. Models without web holes were also analyzed and compared with other cases which were all together examined in terms of load-deformation characteristics and ultimate web shear resistance.

Key Words
sinusoidally corrugated web; web opening; web shear resistance; finite element analysis.

Address
G. Kiymaz, E. Coskun, C. Cosgun and E. Seckin; Department of Civil Engineering, Faculty of Engineering and Architecture, Istanbul Kultur University,Atak Campus, Bakirk, Istanbul, Turkey

Abstract
A Steel Plate Shear Wall (SPSW) is a lateral load resisting system consisting of an infill plate located within a frame. When buckling occurs in the infill plate of a SPSW, a diagonal tension field is formed through the plate. The study of the tension field behavior regarding the distribution and orientation patterns of principal stresses can be useful, for instance to modify the basic strip model to predict the behavior of SPSW more accurately. This paper investigates the influence of torsional and out-of-plane flexural rigidities of boundary members (i.e. beams and columns) on the buckling coefficient as well as on the distribution and orientation patterns of principal stresses associated with the buckling modes. The linear buckling equations in the sense of von-Karman have been solved in conjunction with various boundary conditions, by using the Ritz method. Also, in this research the effects of symmetric and anti-symmetric buckling modes and complete anchoring of the tension field due to lacking of in-plane bending of the beams as well as the aspect ratio of plate on the behavior of tension field and buckling coefficient have been studied.

Key Words
steel shear wall; shear buckling; anchoring; tension field; thin plate; Ritz method; principal stresses.

Address
P. Memarzadeh, M. Azhari and M.M. Saadatpour; Department of Civil Engineering, Isfahan University of Technology, Isfahan, Iran, P.O. Box 84156-83111


Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2017 Techno-Press
P.O. Box 33, Yuseong, Daejeon 34186 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: info@techno-press.com