Techno Press
Tp_Editing System.E (TES.E)
Login Search
You logged in as

scs
 
CONTENTS
Volume 10, Number 4, August 2010
 


Abstract
This paper is concerned with free vibration characteristics and natural frequency of horizontally curved composite plate girder bridges. Three-dimensional finite element models are developed for the girders using the software package LUSAS and analyses carried out on the models. The validity of the finite element models is first established through comparison with the corresponding results published by other researchers. Studies are then carried out to investigate the effects of total number of girders, number of cross-frames and curvature on the free vibration response of horizontally curved composite plate girder bridges. The results confirm the fact that bending modes are always coupled with torsional modes for horizontally curved bridge girder systems. The results show that the first bending mode is influenced by composite action between the concrete deck and steel beam at low subtended angle but, on the girders with larger subtended angle at the centre of curvature such influence is non-existence. The increase in the number of girders results in higher natural frequency but at a decreasing rate. The in-plane modes viz. longitudinal and arching modes are significantly influenced by composite action and number of girders. If no composite action is taken into account the number of girders has no significant effect for the in-plane modes.

Key Words
horizontally curved girders; composite girders; bridges, cross-frames; natural frequency; finite element analysis.

Address
Department of Civil and Structural Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia


Abstract
According to the results of 9 circular concrete filled steel tube (CFT) push-out tests, a new theoretical model for average bond stress versus free end slip curve is proposed. The relationship between average bond stress and free end slip is obtained considering some varying influential parameters such as slenderness ratio and diameter-to-thickness ratio. Based on measured steel tube strain and relative slip at different longitudinal positions, the distribution of bond stress and relative slip along the length of steel tube is obtained. An equation for predicting the varying bond-slip relationship along longitudinal length and a position function reflecting the variation are proposed. The presented method can be used in the application of finite element method to analyze the behavior of CFT structures.

Key Words
concrete filled steel tube; bond-slip; push-out test; constitutive relationship; position function.

Address
State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China

Abstract
Ample research effort has been oriented into developing damage indices with the aim of estimating in a reasonable manner the consequences, in terms of structural damage and deterioration, of severe plastic cycling. Although several studies have been devoted to calibrate damage indices for steel and reinforced concrete members; currently, there is a challenge to study and calibrate the use of such indices for the practical evaluation of complex structures. The aim of this paper is to introduce an energy-based damage index for multi-degree-offreedom steel buildings that accounts explicitly for the effects of cumulative plastic deformation demands. The model has been developed by complementing the results obtained from experimental testing of steel members with those derived from analytical studies regarding the distribution of plastic demands on several steel frames designed according to the Mexico City Building Code. It is concluded that the approach discussed herein is a promising tool for practical structural evaluation of framed structures subjected to large energy demands.

Key Words
energy-based damage index; plastic hysteretic energy; cumulative plastic deformation demands; steel frames.

Address
Fac. de Ing., Universidad Autonoma de Sinaloa, Culiacan, Sinaloa, Mexico
Departamento de Materiales, Universidad Autonoma Metropolitana, Mexico City, Mexico
Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico

Abstract
Three dimensional free vibrations analysis of functionally graded fiber reinforced cylindrical shell is presented, using differential quadrature method (DQM). The cylindrical shell is assumed to have continuous grading of fiber volume fraction in the radial direction. Suitable displacement functions are used to reduce the equilibrium equations to a set of coupled ordinary differential equations with variable coefficients, which can be solved by differential quadrature method to obtain natural frequencies. The main contribution of this work is presenting useful results for continuous grading of fiber reinforcement in the thickness direction of a cylindrical shell and comparison with similar discrete laminate composite ones. Results indicate that significant improvement is found in natural frequency of a functionally graded fiber reinforced cylinder due to the reduction in spatial mismatch of material properties and natural frequency

Key Words
functionally graded fiber reinforce; DQM, free vibrations; three-dimensional; orthotropic; cylinder.

Address
Mechanical Engineering, Department, Razi University, Kermanshah, Iran

Abstract
Enhancement in the seismic buckling capacity of steel tanks caused by the addition of fiber reinforced polymers (FRP) retrofit layers attached to the outer walls of the steel tank is investigated. Threedimensional non-linear finite element modeling is utilized to perform such analysis considering non linear material properties and non-linear large deformation large strain analysis. FRP composites which possess high stiffness and high failure strength are used to reduce the steel hoop stress and consequently improve the tank capacity. A number of tanks with varying dimensions and shell thicknesses are examined using FRP composites added in symmetric layers attached to the outer surface of the steel shell. The FRP shows its effectiveness in carrying part of the hoop stresses along with the steel before steel yielding. Following steel yielding, the FRP restrains the outward bulging of the tank and continues to resist higher hoop stresses. The percentage improvement in the ultimate base moment capacity of the tank due to the addition of more FRP layers is shown to be as high as 60% for some tanks. The percentage of increase in the tank moment capacity is shown to be dependent on the ratio of the shell thickness to the tank radius (t/R). Finally a new methodology has been explained to calculate the location of Elephant foot buckling and consequently the best location of FRP application.

Key Words
steel tanks; seismic design; finite element analysis; elephant

Address
Department of Engineering, Cairo University, Egypt
Steel Structures and Bridges, Structural Engineering Department, Cairo University, Egypt
Dean of Engineering American University, Cairo, Egypt.


Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2024 Techno-Press ALL RIGHTS RESERVED.
P.O. Box 33, Yuseong, Daejeon 34186 Korea, Email: info@techno-press.com