Techno Press
Tp_Editing System.E (TES.E)
Login Search


scs
 
CONTENTS
Volume 18, Number 2, February 2015
 

Abstract
This study presents a strategy so-called Subspace Search Mechanism (SSM) for reducing the computational time for convergence of population based metaheusristic algorithms. The selected metaheuristic for this study is the Cuckoo Search algorithm (CS) dealing with size optimization of trusses. The complexity of structural optimization problems can be partially due to the presence of high-dimensional design variables. SSM approach aims to reduce dimension of the problem. Design variables are categorized to predefined groups (subspaces). SSM focuses on the multiple use of the metaheuristic at hand for each subspace. Optimizer updates the design variables for each subspace independently. Updating rules require candidate designs evaluation. Each candidate design is the assemblage of responsible set of design variables that define the subspace of interest. SSM is incorporated to the Cuckoo Search algorithm for size optimizing of three small, moderate and large space trusses. Optimization results indicate that SSM enables the CS to work with less number of population (42%), as a result reducing the time of convergence, in exchange for some accuracy (1.5%). It is shown that the loss of accuracy can be lessened with increasing the order of complexity. This suggests its applicability to other algorithms and other complex finite element-based engineering design problems.

Key Words
subspace search mechanism; structural optimization; population based meta-heuristic algorithms; cuckoo search; truss size optimization

Address
Centre of Excellence for Fundamental Studies in Structural Engineering, School of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran-16, Iran.

Abstract
In this study, two common types of laterally supported castellated beams are considered as design problems: beams with hexagonal openings and beams with circular openings. The main goal of manufacturing these beams is to increase the moment of inertia and section modulus, which results in greater strength and rigidity. These types of open-web beams have found widespread use, primarily in buildings, because of great savings in materials and construction costs. Hence, the minimum cost is taken as the design objective function and the Colliding Bodies Optimization (CBO) method is utilized for obtaining the solution of the design problem. The design methods used in this study are consistent with BS5950 Part 1 and Part 3, and Euro Code 3. A number of design examples are considered to optimize by CBO algorithm. Comparison of the optimal solution of the CBO algorithm with those of the Enhanced Charged System Search (ECSS) method demonstrate the capability of CBO in solving the present type of design problem. It is also observed that optimization results obtained by the CBO algorithm for three design examples have less cost in comparison to the results of the ECSS algorithm. From the results obtained in this paper, it can be concluded that the use of beam with hexagonal opening requires smaller amount of steel material and it is superior to the cellular beam from the cost point of view.

Key Words
steel castellated beams; colliding bodies optimization; optimal design

Address
Centre of Excellence for Fundamental Studies in Structural Engineering, Iran University of Science and Technology, Narmak, Tehran-16, Iran.

Abstract
Experimental tests on cellular beams with sinusoidal openings showed two main failure modes around the openings. They concern the formation of four plastic hinges and the local instability of the sinusoidal part of the opening. In parallel, numerical analysis of the sinusoidal part of the opening revealed the existence of an elastic rotational restraint between the intermediate web-post and the adjacent opening panel. The aim of the present study is to present an approach to quantify this rotational restraint. Through the response surface method, a mathematical model is proposed. It shows a great ability to predict the rotational restraint value as a function of the geometrical parameters of the opening. This model can be used to perform an extensive study with various geometrical configurations of beams with the aim to develop a reliable and realistic analytical model predicting the resistance of the sinusoidal openings.

Key Words
cellular beams; sinusoidal openings; local instability; elastic rotational restraint; response surface method; mathematical model

Address
(1) Clermont Université, Universite Blaise Pascal, Institut Pascal, BP 10448, F-63000 Clermont-Ferrand, France;
(2) CNRS, UMR 6602, Institut Pascal, F-63171 Aubière, France.

Abstract
In this study, the effects of weld parameters on nugget size and tensile-shear strength of welding joint in electrical resistance spot welding of galvanized DP 600 steel sheets having 1.2 mm were investigated. Taguchi design method has been employed to examine the effects of five parameters of welding current, electrode pressure, welding time, clamping time and holding time by using the L27 (53) orthogonal array. Results showed that the most effective parameters on tensile shear strength and the nugget size ratio (hn/dn) were found as welding current and welding time, whereas electrode pressure, clamping time and holding time were less effective factors. Max. 545 MPa strength was obtained through proposed optimum conditions by Taguchi technique.

Key Words
resistance spot welding; nugget size ratio; tensile shears strength; Taguchi method

Address
Yildiz Technical University, Naval Architect and Marine Engineering Faculty, 34349, İtanbul, Turkey.

Abstract
Orthotropic decks composed of deck plate, ribs, cross beams and wearing surface are frequently used in industry to span long distances due to their light structures and load carrying capacities. As a result they are broadly preferred in industry and there are a lot of bridges of this type exist in the world. Nevertheless, some of them cannot sustain the anticipated service life and damages in form of cracks develop in steel components and wearing surface. Main reason to these damages is seen as the repetitive wheel loads, namely the fatigue loading. Solutions to this problem could be divided into two categories: qualitative and quantitative. Qualitative solutions may be new design methodologies or innovative materials, whereas quantitative solution should be arranging dimensions of deck structure in order to resist wheel loads till the end of service life. Wearing surface on deck plate plays a very important role to avoid or mitigate these damages, since it disperses the load coming on deck structure and increases the bending stiffness of deck plate by forming a composite structure together with it. In this study the effect of Elastic moduli, Poisson ratio and thickness of wearing surface on the stresses emerged in steel deck and wearing surface itself is investigated using a FE-model developed to analyze orthotropic steel bridges.

Key Words
steel bridge; orthotropic deck; wearing surface; bonding layer; FEM

Address
Department of Civil Engineering, Yildiz Technical University, Esenler 34220, Turkey.

Abstract
This paper presents the results of four long-term experiments carried out to investigate the time-dependent behaviour of composite floor slabs with particular attention devoted to the development of non-uniform shrinkage through the slab thickness. This is produced by the presence of the steel deck which prevents moisture egress to occur from the underside of the slab. To observe the influence of different drying conditions on the development of shrinkage, the four 3.3 m long specimens consisted of two composite slabs cast on Stramit Condeck HP® steel deck and two reinforced concrete slabs, with the latter ones having both faces exposed for drying. During the long-term tests, the samples were maintained in a simply-supported configuration subjected to their own self-weight, creep and shrinkage for four months. Separate concrete samples were prepared and used to measure the development of shrinkage through the slab thickness over time for different drying conditions. A theoretical model was used to predict the time-dependent behaviour of the composite and reinforced concrete slabs. This approach was able to account for the occurrence of non-uniform shrinkage and comparisons between numerical results and experimental measurements showed good agreement. This work highlights the importance of considering the shrinkage gradient in predicting shrinkage deformations of composite slabs. Further comparisons with experimental results are required to properly validate the adequacy of the proposed approach for its use in routine design.

Key Words
composite; concrete; shrinkage; slabs; steel

Address
(1) Safat Al-Deen:
Centre for Infrastructure Engineering & Safety, School of Civil and Environmental Engineering, UNSW Australia, NSW 2052, Australia;
(2) Gianluca Ranzi:
School of Civil Engineering, The University of Sydney, Sydney NSW 2006, Australia;
(3) Brian Uy:
Centre for Infrastructure Engineering & Safety, School of Civil and Environmental Engineering, UNSW Australia, NSW 2052, Australia.

Abstract
The paper considers the free vibration analysis of FGM grid systems. Up to now, very little work has been done on this type of system and the paper aspires to fill this gap. Based on the hybrid-stress finite element formulation free vibration solutions for FGM grid systems of various aspect ratios, different types of gradations functions, and support conditions are determined. The tabulation of these results, not available thus far, should be useful to designers and researchers who may use them.

Key Words
grid system; functionally graded materials; free vibration; hybrid finite element

Address
İstanbul Technical University, Civil Engineering Department, Maslak, Sarıyer, 34469, İstanbul, Turkey.

Abstract
In the present work, a simple and refined trigonometric higher-order beam theory is developed for bending and vibration of functionally graded beams. The beauty of this theory is that, in addition to modeling the displacement field with only 3 unknowns as in Timoshenko beam theory, the thickness stretching effect (εz ≠ 0) is also included in the present theory. Thus, the present refined beam theory has fewer number of unknowns and equations of motion than the other shear and normal deformations theories, and it considers also the transverse shear deformation effects without requiring shear correction factors. The neutral surface position for such beams in which the material properties vary in the thickness direction is determined. Based on the present refined trigonometric higher-order beam theory and the neutral surface concept, the equations of motion are derived from Hamilton's principle. Numerical results of the present theory are compared with other theories to show the effect of the inclusion of transverse normal strain on the deflections and stresses.

Key Words
functionally graded beam; a simple third-unknown theory; normal strain; neutral surface position

Address
(1) Mohamed Bourada, Abdelhakim Kaci, Mohammed Sid Ahmed Houari, Abdelouahed Tounsi:
Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department, Algeria;
(2) Abdelouahed Tounsi:
Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite de Sidi Bel Abbes, Faculte de Technologie, Departement de genie civil, Algeria.

Abstract
This paper addresses theoretically the bending and buckling behaviors of size-dependent nanobeams made of functionally graded materials (FGMs) including the thickness stretching effect. The size-dependent FGM nanobeam is investigated on the basis of the nonlocal continuum model. The nonlocal elastic behavior is described by the differential constitutive model of Eringen, which enables the present model to become effective in the analysis and design of nanostructures. The present model incorporates the length scale parameter (nonlocal parameter) which can capture the small scale effect, and furthermore accounts for both shear deformation and thickness stretching effects by virtue of a sinusoidal variation of all displacements through the thickness without using shear correction factor. The material properties of FGM nanobeams are assumed to vary through the thickness according to a power law. The governing equations and the related boundary conditions are derived using the principal of minimum total potential energy. A Navier-type solution is developed for simply-supported boundary conditions, and exact expressions are proposed for the deflections and the buckling load. The effects of nonlocal parameter, aspect ratio and various material compositions on the static and stability responses of the FGM nanobeam are discussed in detail. The study is relevant to nanotechnology deployment in for example aircraft structures.

Key Words
nanobeam; nonlocal elasticity theory; bending; buckling; stretching effect; functionally graded materials; navier solution; aspect ratio

Address
(1) Fouzia Larbi Chaht, Abdelhakim Kaci, Abdelouahed Tounsi:
Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department, Algeria;
(2) Mohammed Sid Ahmed Houari, Abdelouahed Tounsi:
Laboratoire des Structures et Matériaux Avancés dans le Génie Civil et Travaux Publics, Université de Sidi Bel Abbes, Faculté de Technologie, Département de génie civil, Algérie;
(3) O. Anwar Bég:
Gort Engovation- Propulsion, Nanomechanics and Biophysics, Southmere Avenue, Bradford, UK;
(4) S.R. Mahmoud:
Department of Mathematics, Faculty of Science, King Abdulaziz University, Saudi Arabia;
(5) S.R. Mahmoud:
Mathematics Department, Faculty of Science, University of Sohag, Egypt.

Abstract
In this paper, an efficient and simple trigonometric shear deformation theory is presented for thermal buckling analysis of functionally graded plates. It is assumed that the plate is in contact with elastic foundation during deformation. The theory accounts for sinusoidal distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. Unlike the conventional trigonometric shear deformation theory, the proposed sinusoidal shear deformation theory contains only four unknowns. It is assumed that the mechanical and thermal non-homogeneous properties of functionally graded plate vary smoothly by distribution of power law across the plate thickness. Using the non-linear strain-displacement relations, the equilibrium and stability equations of plates made of functionally graded materials are derived. The boundary conditions for the plate are assumed to be simply supported on all edges. The elastic foundation is modelled by two-parameters Pasternak model, which is obtained by adding a shear layer to the Winkler model. The effects of thermal loading types and variations of power of functionally graded material, aspect ratio, and thickness ratio on the critical buckling temperature of functionally graded plates are investigated and discussed.

Key Words
functionally graded materials; buckling; plate theory; elastic foundations

Address
(1) Wafa Tebboune, Kouider Halim Benrahou, Abdelouahed Tounsi:
Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department, Algeria;
(2) Mohammed Sid Ahmed Houari, Abdelouahed Tounsi:
Laboratoire des Structures et Matériaux Avancés dans le Génie Civil et Travaux Publics, Université de Sidi Bel Abbes, Faculté de Technologie, Département de Génie Civil, Algérie.

Abstract
The steel-concrete composite decks have high fatigue durability and deformability in comparison with ordinary RC slabs. Withal, the steel-concrete composite deck is mostly heavier than the RC slabs. We have proposed herein a new type of steel-concrete composite deck which is lighter than the typical steel-concrete composite decks. This can be achieved by arranging hollow sectional members as shear connectors, namely, half-pipe or channel shear connectors. The present study aims to experimentally investigate mechanical characteristics of the half-pipe shear connectors under the direct shear force. The shear bond capacity and deformability of the half-pipe shear connectors are strongly affected by the thickness-to-diameter ratio. Additionally, the shear strengths of the hollow shear connectors (i.e. the half-pipe and the channel shear connectors) are compared. Furthermore, shear capacities of the hollow shear connectors equivalent to headed stud connectors are also discussed.

Key Words
steel-concrete composite deck; hollow shear connector; thickness-to-diameter ratio; web thickness-to-width ratio; shear bond capacity

Address
(1) Kojiro Uenaka:
Department of Civil Engineering, Kobe City College of Technology, Gakuenhigashimachi 8-3, Nishi, Kobe, 6512194, Japan;
(2) Hiroshi Higashiyama:
Department of Civil and Environmental Engineering, Kinki University, Kowakae 3-4-1, Higashiosaka, 5778502, Japan.

Abstract
A Lead Extrusion Damper (LED) is experimentally studied under various frequencies and displacement amplitudes. Experimental results show that the force-displacement hysteresis loops of the LED are close to rectangular and the force-velocity hysteresis loops exhibit nonlinear hysteretic characteristic. Also, the LED can provide consistent energy dissipation without any stiffness degradation. Based on the experimental results, a mathematical model is then proposed to describe the effects of frequency and displacement on property of LED. It can be proved from the comparison between experimental and numerical results that the mathematical model can accurately describe the mechanical behavior of LED. Subsequently, the seismic responses of the Schwedler reticulated shell structure with LEDs are analyzed by ANSYS software, in which three different installation forms of LEDs are considered. It can be concluded that the LED can effectively reduce the displacement and acceleration responses of this type of structures.

Key Words
large-span reticulated shell; lead extrusion damper (LED); mathematical model; dynamic analysis; vibration control

Address
(1) M.F. Yang, Z.D. Xu, X.C. Zhang:
Key Laboratory of C&PC Structures of the Ministry of Education, Southeast University, Nanjing 210096, China;
(2) M.F. Yang:
School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, China.

Abstract
This study evaluates behavior of the Y-type perfobond rib shear connector proposed by Kim et al. (2013). In addition, an empirical shear resistance formula is developed based on push-out tests. Various types of the proposed Y-type perfobond rib shear connectors are examined to evaluate the effects of design variables such as concrete strength, number of transverse rebars, and thickness of rib. It is verified that higher concrete strength increases shear resistance but decreases ductility. Placing transverse rebars significantly increases both the shear resistance and ductility. As the thickness of the ribs increases, the shear resistance increases but the ductility decreases. The experimental results indicate that a Y-type perfobond rib shear connector has higher shear resistance and ductility than the conventional stud shear connector. The effects of the end bearing resistance, resistance by transverse rebars, concrete dowel resistance by holes, and concrete dowel resistance by Y-shape ribs on the shear resistance are estimated empirically based on the push-out test results and the additional push-out test results by Kim et al. (2013). An empirical shear resistance formula is suggested to estimate the shear resistance of a Y-type perfobond shear connector for design purposes. The newly developed shear resistance formula is in reasonable agreement with the experimental results because the average ratio of measured shear resistance to estimated shear resistance is 1.024.

Key Words
Y-type perfobond rib shear connector; empirical analysis; shear connection; push-out test; shear resistance formula

Address
Department of Civil and Environmental Engineering, Yonsei University, Seoul, 120-749, Korea.

Abstract
This study addresses the load capacity prediction of circular concrete-filled steel tube (CFST) columns under axial compression using current design codes. Design methods given in the Chinese code CECS 28:2012 (2012), American code AISC 360-10 (2010) and EC4 (2004) are presented and described briefly. A wide range of experimental data of 353 CFST columns is used to evaluate the applicability of CECS 28:2012 in calculating the strength of circular CFST columns. AISC 360-10 and EC4 (2004) are also compared with the test results. The comparisons indicate that all three codes give conservative predictions for both short and long CFST columns. The effects of concrete strength, steel strength and diameter-to-thickness ratio on the accuracy of prediction according to CECS 28:2012 are discussed, which indicate a possibility of extending the limitations on the material strengths and diameter-to-thickness ratio to higher values. A revised equation for slenderness reduction factor in CECS 28:2012 is given.

Key Words
concrete-filled steel tube columns; axial compression; load capacity; CECS 28:2012

Address
School of Civil Engineering, Wuhan University, Wuhan City, Hubei Province, China.


Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2017 Techno-Press
P.O. Box 33, Yuseong, Daejeon 34186 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: info@techno-press.com