Techno Press
Tp_Editing System.E (TES.E)
Login Search


scs
 
CONTENTS
Volume 19, Number 5, November 2015
 

Abstract
In order to investigate the accuracy and applicability of steel equivalent constitutive model, the calculated results were compared with typical tests of steel frames under static and dynamic loading patterns firstly. Secondly, four widely used models for time history analysis of steel frames were compared to discuss the applicability and efficiency of different methods, including shell element model, multi-scale model, equivalent constitutive model (ECM) and traditional beam element model (especially bilinear model). Four-story steel frame models of above-mentioned finite element methods were established. The structural deformation, failure modes and the computational efficiency of different models were compared. Finally, the equivalent constitutive model was applied in seismic incremental dynamic analysis of a ten-floor steel frame and compared with the cyclic hardening model without considering damage and degradation. Meanwhile, the effects of damage and degradation on the seismic performance of steel frame were discussed in depth. The analysis results showed that: damages would lead to larger deformations. Therefore, when the calculated results of steel structures subjected to rare earthquake without considering damage were close to the collapse limit, the actual story drift of structure might already exceed the limit, leading to a certain security risk. ECM could simulate the damage and degradation behaviors of steel structures more accurately, and improve the calculation accuracy of traditional beam element model with acceptable computational efficiency.

Key Words
steel frame; equivalent constitutive model (ECM); degradation and damage; calculation models; nonlinear time history analysis; ABAQUS (UMAT)

Address
(1) Meng Wang:
School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China;
(2) Yongjiu Shi, Yuanqing Wang:
Department of Civil Engineering, Tsinghua University, Beijing 100084, China.

Abstract
This paper presents an experimental study on the effectiveness of simultaneous application of carbon fiber-reinforced polymer (CFRP) and steel jacket in strengthening slender reinforced concrete (RC) column. The columns were 200 mm square cross section with lengths ranging from 1600 to 3000 mm. Ten columns were tested under axial load. The effects of the strengthening technique, slenderness ratio, cross-section area of steel angle and CFRP layer number were examined in terms of axial load-axial strain curve, CFRP strain, steel strip strain and steel angle strain. The experiments indicate that strengthening RC columns with combined CFRP and steel jacket is effective in enhancing the load capacity, ductility and energy dissipation capacity of RC column. Based on the existing models for RC columns strengthened with CFRP and with steel jacket, a design formula considering a slenderness reduction factor is proposed to predict the load capacity of the RC columns strengthened with combined CFRP and steel jacket. The predictions agree well with the experimental results.

Key Words
reinforced concrete column; strengthening; steel jacket; CFRP; axial load; load capacity

Address
School of Civil Engineering, Wuhan University, Wuhan City, Hubei Province, China.

Abstract
In order to determine the mechanical behavior of the curved laminates in practical applications, three right-angled composite brackets with different lay-ups were investigated both experimentally and numerically. In the experimental, quasi-static tests on both unidirectional and multidirectional curved composite brackets were conducted to study the progressive failure and failure modes of the curved laminates. In the numerical modeling, three-dimensional finite element analysis was used to simulate the mechanical behavior of the laminates. Here, a strength-based failure criterion, namely the Ye criterion, was used to predict the delamination failure in the composite curved laminates. The mechanical responses of the laminate subjected to off-axis tensile loading were analyzed, which include the progressive failure, the failure locations, the load-displacement relationships, the load-strain relationships, and the stress distribution around the curved region of the angled bracket. Subsequently, the effects of stacking sequence and thickness on the load carrying capacity and the stiffness of the laminates were discussed in detail. Through the experimental observation and analysis, it was found that the failure mode of all the specimens is delamination, which is initiated abruptly and develops unstably on the symmetric plane, close to the inner surface, and about 29

Key Words
curved laminate; mechanical behavior; finite element; stacking sequence; delamination

Address
(1) Lonquan Liu, Junqi Zhang, Hai Wang:
School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai, P.R. China;
(2) Zhongwei Guan:
School of Engineering, University of Liverpool, Brownlow Street, Liverpool L69 3GQ, UK.

Abstract
Current climate conditions along with advances in technology make further design and verification methods for structural strength and reliability of wind turbine towers imperative. Along with the growing interest for "green" energy, the wind energy sector has been developed tremendously the past decades. To this end, the improvement of wind turbine towers in terms of structural detailing and performance result in more efficient, durable and robust structures that facilitate their wider application, thus leading to energy harvesting increase. The wind tower industry is set to expand to greater heights than before and tapered steel towers with a circular cross-section are widely used as more capable of carrying heavier loads. The present study focuses on the improvement of the structural response of steel wind turbine towers, by means of internal stiffening. A thorough investigation of the contribution of stiffening rings to the overall structural behavior of the tower is being carried out. These stiffening rings are placed along the tower height to reduce local buckling phenomena, thus increasing the buckling strength of steel wind energy towers and leading the structure to a behavior closer to the one provided by the beam theory. Additionally to ring stiffeners, vertical stiffening schemes are studied to eliminate the presence of short wavelength buckles due to bending. For the purposes of this research, finite element analysis is applied in order to describe and predict in an accurate way the structural response of a model tower stiffened by internal stiffeners. Moreover, a parametric study is being performed in order to investigate the effect of the stiffeners' number to the functionality of the aforementioned stiffening systems and the improved structural behavior of the overall wind converter.

Key Words
wind turbine tower; stiffening ring; numerical analysis; shell elements; stringer stiffeners

Address
(1) Nafsika Stavridou, Evangelos Efthymiou, Simos Gerasimidis, Charalampos C. Baniotopoulos:
Department of Civil Engineering, Aristotle University of Thessaloniki, Greece;
(2) Simos Gerasimidis:
Department of Civil Engineering and Engineering Mechanics, Columbia University, 500 West 120th Street, NY 10027, New York, USA;
(3) Charalampos C. Baniotopoulos:
School of Civil Engineering, University of Birmingham, Edgbaston Birmingham, B152TT, United Kingdom.

Abstract
A behavior model for screw connections is developed to provide a better representation of the nonlinear response of thin steel plate shear walls (TSPSWs) with infill plates attached to the boundary frame members via self-drilling screws. This analytical representation is based on the load-bearing deformation relationship between the infill plate and the screw threads. The model can be easily implemented in strip models of TSPSWs where the tension field action of the infill plates is represented by a series of parallel discrete tension-only strips. Previously reported experimental results from tests of two different TSPSWs are used to provide experimental validation of the modeling approach. The beam-to-column connection behavior was also included in the analyses using a four parameter rotational spring model that was calibrated to a test of an identical frame as used for the TSPSW specimens but without the infill plates. The complete TSPSW models consisting of strips representing the infill plates, zero length elements representing the load-bearing deformation response of the screw connection at each end of the strips and the four parameter spring model at each beam-to-column connection are shown to have good agreement with the experimental results. The resulting models should enable design and analysis of TSPSWs for both new construction and retrofit of existing buildings.

Key Words
screw connection; steel plate shear wall; strip model; tension field action; bearing deformation

Address
(1) Cuneyt Vatansever:
Department of Civil Engineering, Faculty of Civil Engineering, Istanbul Technical University, Istanbul, Turkey;
(2) Jeffrey W. Berman:
Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA.

Abstract
Despite considerable life casualty and financial loss resulting from past earthquakes, many existing steel buildings are still seismically vulnerable as they have no lateral resistance or at least need some sort of retrofitting. Passive control methods with decreasing seismic demand and increasing ductility reduce rate of vulnerability of structures against earthquakes. One of the most effective and practical passive control methods is to use a shear panel system working as a ductile fuse in the structure. The shear Panel System, SPS, is located vertically between apex of two chevron braces and the flange of the floor beam. Seismic energy is highly dissipated through shear yielding of shear panel web while other elements of the structure remain almost elastic. In this paper, lateral behavior and related benefits of this system with narrow-flange link beams is experimentally investigated in chevron braced simple steel frames. For this purpose, five specimens with IPE (narrow-flange I section) shear panels were examined. All of the specimens showed high ductility and dissipated almost all input energy imposed to the structure. For example, maximum SPS shear distortion of 0.128-0.156 rad, overall ductility of 5.3-7.2, response modification factor of 7.1-11.2, and finally maximum equivalent viscous damping ratio of 35.5-40.2% in the last loading cycle corresponding to an average damping ratio of 26.7-30.6% were obtained. It was also shown that the beam, columns and braces remained elastic as expected. Considering this fact, by just changing the probably damaged shear panel pieces after earthquake, the structure can still be continuously used as another benefit of this proposed retrofitting system without the need to change the floor beam.

Key Words
IPE shear panel; vertical link beam; chevron braced simple frame; cyclic testing; ductility ratio; energy dissipation; response modification

Address
Center of Excellence for Engineering and Management of Civil Infrastructures, School Civil Engineering, College of Engineering, The University of Tehran, P.O. Box 11155-4563, Iran.


Abstract
The aim of this experimental research is to investigate the conformity of the four-bolt unstiffened moment end-plate connections consisting of European steel sections which do not meet the limitations specified for beam flange width and overall beam depth in ANSI/AISC 358-10 to the requirements of seismic application. However, the connections are satisfactory with the limitations required by Turkish Earthquake Code. For this purpose, four test specimens were designed and cyclic load was applied to three specimens while one was tested under monotonic loading to provide data for the calibration of the analytical models. The moment-rotation hysteresis loops and the failure modes for all test specimens are presented. A full three-dimensional finite element model is also developed for each test specimen for use to predict their behavior and to provide a tool for generating subsequent extensive parametric studies. The test results show that all specimens performed well in terms of rotation capacity and strength. Finite element models are found to be capable of approximating the cyclic behavior of the extended end-plate connection specimens.

Key Words
four-bolt unstiffened moment end-plate connection; cyclic performance; rotation capacity; finite element model

Address
Department of Civil Engineering, İstanbul Technical University, 34469, Maslak, İstanbul, Turkey.


Abstract
'Distortional buckling' is one of the predominant buckling types that may occur in a steel-concrete composite box beam (SCCBB) under a negative moment. The key factors, which affect the buckling modes, are the torsional and lateral restraints of the bottom plate of a SCCBB. Therefore, this article investigates the equivalent lateral and torsional restraint rigidity of the bottom plate of a SCCBB under a negative moment; the results of which show a linear coupling relationship between the applied forces and the lateral and/or torsional restraint stiffness, which are not depended on the cross-sectional properties of a SCCBB completely. The mathematical formulas for calculating the lateral and torsional restraint rigidity of the bottom plate can be used to estimate: (1) the critical distortional buckling stress of SCCBBs under a negative moment; and (2) the critical distortional moment of SCCBBs. This article develops an improved calculation method for SCCBBs on an elastic foundation, which takes into account the coupling effect between the applied forces and the lateral and/or torsional restraint rigidity of the bottom plate. This article analyzes the accuracy of the following calculation methods by using 24 examples of SCCBBs: (1) the conventional energy method; (2) the improved calculation method, as it has been derived in this article; and (3) the ANSYS finite element method. The results verify that the improved calculation method, as it has been proved in this article, is more accurate and reliable than that of the current energy method, which has been noted in the references.

Key Words
steel-concrete composite box beam; elastic foundation beam method; distortional buckling; rotational restraint stiffness; lateral restraint stiffness

Address
(1) Wangbao Zhou, Shujin Li:
School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China;
(2) Lizhong Jiang, Zhi Huang:
School of Civil Engineering, Central South University, Changsha, 410075, China.

Abstract
Since the coefficients of thermal expansion (CTE) between concrete and GFRP, steel and GFRP are quite different, GFRP laminates with different laminas stacking-sequence present different thermal behavior and currently there is no specification on mechanical properties of GFRP laminates, it is necessary to investigate the thermal influence on composite girder with stay-in-place (SIP) bridge deck at different levels and on different scales. This paper experimentally and theoretically investigated the CTE of GFRP at lamina's and laminate's level on micro-mechanics scales. The theoretical CTE values of laminas and laminates agreed well with test results, indicating that designers could obtain thermal properties of GFRP laminates with different lamina stacking-sequence through micro-mechanics methods. On the basis of the CTE tests and theoretical analysis, the thermal behaviors of composite girder with hybrid GFRP-concrete deck were studied numerically and theoretically on macro-mechanics scales. The theoretical results of concrete and steel components of composite girder agreed well with FE results, but the theoretical results of GFRP profiles were slightly larger than FE and tended to be conservative at a safety level.

Key Words
composite girder; hybrid GFRP-concrete deck; lamina and laminate's level; coefficients of thermal expansion; thermal multi-scale analysis

Address
Department of Bridge Engineering, Tongji University, Shanghai, China.

Abstract
This paper proposes a simple inelastic analysis approach to efficiently map out the complete nonlinear post-collapse (strain-softening) response and the maximum load capacity of axially loaded concrete encased steel composite columns (stub and slender). The scheme simultaneously incorporates the influences of difficult instabilizing phenomena such as concrete confinement, initial geometric imperfection, geometric nonlinearity, buckling of reinforcement bars and local buckling of structural steel, on the overall behavior of the composite columns. The proposed numerical method adopts fiber element discretization and an iterative Muller's algorithm with an additional adaptive technique that robustly yields solution convergence. The accuracy of the proposed analysis scheme is validated through comparisons with various available experimental benchmarks. Finally, a parametric study of various key parameters on the overall behaviors of the composite columns is conducted.

Key Words
composite column; concrete confinement; concrete encased steel; geometry nonlinearity; inelastic analysis; post-buckling; strain-softening

Address
(1) V.S. Ky, T. Thepchatri:
Department of Civil Engineering, Chulalongkorn University, Bangkok 10330, Thailand;
(2) S. Tangaramvong:
Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia;
(3) S. Tangaramvong:
Department of Architecture, Chulalongkorn University, Bangkok 10330, Thailand.

Abstract
In this work, a trigonometric refined beam theory for the bending, buckling and free vibration analysis of carbon nanotube-reinforced composite (CNTRC) beams resting on elastic foundation is developed. The significant feature of this model is that, in addition to including the shear deformation effect, it deals with only 3 unknowns as the Timoshenko beam (TBM) without including a shear correction factor. The single-walled carbon nanotubes (SWCNTs) are aligned and distributed in polymeric matrix with different patterns of reinforcement. The material properties of the CNTRC beams are assessed by employing the rule of mixture. To examine accuracy of the present theory, several comparison studies are investigated. Furthermore, the effects of different parameters of the beam on the bending, buckling and free vibration responses of CNTRC beam are discussed.

Key Words
CNTRC beams; bending; buckling; free vibration; elastic foundation

Address
(1) S.H. Tagrara, Abdelkader Benachour, Abdelouahed Tounsi:
Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department, Algeria;
(2) S.H. Tagrara, Abdelkader Benachour, Mohamed Bachir Bouiadjra, Abdelouahed Tounsi:
Algerian National Thematic Agency of Research in Science and Technology (ATRST), Algeria;
(3) Mohamed Bachir Bouiadjra, Abdelouahed Tounsi:
Laboratoire des Structures et Matériaux Avancés dans le Génie Civil et Travaux Publics, Université de Sidi Bel Abbes, Faculté de Technologie, Département de génie civil, Algeria;
(4) Abdelouahed Tounsi:
Laboratoire de Modélisation et Simulation Multi-échelle, Département de Physique, Faculté des Sciences Exactes, Département de Physique, Université de Sidi Bel Abbés, Algeria.

Abstract
In this paper, free vibration characteristics of a rotating double tapered functionally graded beam is investigated. Material properties of the beam vary continuously through thickness direction according to the power-law distribution of the volume fraction of the constituents. The governing differential equations of motion are derived using the Hamilton's principle and solved utilizing an efficient and semi-analytical technique called the Differential Transform Method (DTM). Several important aspects such as taper ratios, rotational speed, hub radius, as well as the material volume fraction index which have impacts on natural frequencies of such beams are investigated and discussed in detail. Numerical results are tabulated in several tables and figures. In order to demonstrate the validity and accuracy of the current analysis, some of present results are compared with previous results in the literature and an excellent agreement is observed. It is showed that the natural frequencies of an FG rotating double tapered beam can be obtained with high accuracy by using DTM. It is also observed that nondimensional rotational speed, height taper ratio, power-law exponent significantly affect the natural frequencies of the FG double tapered beam while the effects of hub radius and breadth taper ratio are negligible.

Key Words
free vibration analysis; non-uniform rotating beam; functionally graded material; differential transform method

Address
Mechanical Engineering department, faculty of engineering, Imam Khomeini International University, P.O.B. 16818-34149, Qazvin, Iran.

Abstract
This paper presents a detailed parametric study, conducted using finite element tools to cover a range of several geometric and material parameters, on the behaviour of thin-walled partially encased composite (PEC) columns. The PEC columns studied herein are composed of thin-walled built-up H-shaped steel sections with concrete infill cast between the flanges. Transverse links are provided between the opposing flanges to improve resistance to local buckling. The parametric study is confined to eccentrically-loaded columns subjected to major axis bending only. The parameters that were varied include the overall column slenderness ratio (L/d), load eccentricity ratio (e/d), link spacing-to-depth ratio (s/d), flange plate slenderness ratio (b/t) and concrete compressive strength (fcu). The overall column slenderness ratio was chosen to be the primary variable with values of 5, 10 and 15. Other parameters were varied within each case of L/d ratio. The effects of the selected parameters on the behaviour of PEC columns were studied with respect to the failure mode, peak axial load, axial load versus average axial strain response, axial load versus lateral displacement response, moment versus lateral displacement behaviour and the axial load.moment interaction diagram. The results of the parametric study are presented in the paper and the influences of each of the parameters investigated are discussed.

Key Words
composite; column; finite element; local buckling; partially encased; plate; slenderness ratio

Address
(1) Mahbuba Begum:
Department of Civil Engineering, BUET, Dhaka, Bangladesh;
(2) Robert G. Driver, Alaa E. Elwi:
Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada.

Abstract
A square steel sandwich plate with lattice corrugated core is explored for damping improvement. A range of damping materials are filled inside the openings provided by the corrugated core, or are applied on the surfaces of the facesheets. The dynamic properties such as natural frequency and damping factor are experimentally measured for the sandwich plate with each filling solution. The relative performance of each insertion is compared in terms of damping capacity and added mass.

Key Words
steel sandwich constructions; lattice structures; damping materials; vibration test; damping capacity

Address
(1) Institute of Mechanics, 264 Doi Can, Ha Noi, Vietnam;
(2) Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Vietnam.


Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2017 Techno-Press
P.O. Box 33, Yuseong, Daejeon 34186 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: info@techno-press.com