Techno Press
Tp_Editing System.E (TES.E)
Login Search
You logged in as

sem
 
CONTENTS
Volume 21, Number 4, November10 2005
 


Abstract
Cable supported structures offer an elegant and economical solution for bridging over long spans with resultant low material content and ease of construction. In this paper, a model of shallow cable supported footbridge with reverse profiled pre-tensioned cables is treated and its load deformation characteristics under different quasi-static loads are investigated. Effects of important parameters such as cable sag and pre-tension are also studied. Numerical results performed on a 3D model show that structural stiffness of this bridge (model) depends not only on the cable sag and cross sectional areas of the cables, but also on the pre-tension in the reverse profiled cables. The tension in the top supporting cables can be adjusted to a high level by the pre-tension in the reverse profiled bottom cables, with the total horizontal force in the bridge structure remaining reasonably constant. It is also evident that pre-tensioned horizontally profiled cables can greatly increase the lateral horizontal stiffness and suppress the lateral horizontal deflection induced by eccentric vertical loads.

Key Words
suspension footbridge; structural stiffness; parameter study; reverse profile; pre-tension.

Address
Ming-Hui Huang and David P. Thambiratnam;
School of Urban Development, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
Nimal J. Perera; Bird & Marshall Ltd, London, England

Abstract
Cyclic loading tests were carried out on six half-scale reinforced concrete beam-column subassemblages designed to the current Chinese Seismic Design Code for Buildings. The deformation behavior and restoring force characteristics of the subassemblages were studied. Emphasis was directed on their seismic behavior and deformation components. Based on test data and a simplified analysis model of the global and local deformation, the contribution of the deformation components due to beam flexure, column flexure, joint shear, and slippage of longitudinal reinforcement in the joint to the global deformation of subassemblages at different displacement amplitudes of cyclic loading was investigated.

Key Words
reinforced concrete; beam-column subassemblage; seismic behavior; deformation characteristics.

Address
College of Civil Engineering, Huaqiao University, Quanzhou 362021, China

Abstract
Plate elements in fully profiled sandwich panels are generally subjected to local buckling failure modes and this behaviour is treated in design by using the conventional effective width method for plates with a width to thickness (b/t) ratio less than 100. If the plate elements are very slender (b/t > 1000), the panel failure is governed by wrinkling instead of local buckling and the strength is determined by the flexural wrinkling formula. The plate elements in fully profiled sandwich panels do not fail by wrinkling as their b/t ratio is generally in the range of 100 to 600. For this plate slenderness region, it was found that the current effective width formula overestimates the strength of the fully profiled sandwich panels whereas the wrinkling formula underestimates it. Hence a new effective width design equation has been developed for practical plate slenderness values. However, no guidelines exist to identify the plate slenderness (b/t) limits defining the local buckling, wrinkling and the intermediate regions so that appropriate design rules can be used based on plate slenderness ratios. A research study was therefore conducted using experimental and numerical studies to investigate the effect of plate slenderness ratio on the ultimate strength behaviour of foam supported steel plate elements. This paper presents the details of the study and the results.

Key Words
profiled sandwich panels; local buckling; flexural wrinkling; plate slenderness limit; intermediate region; effective width.

Address
School of Urban Development, Queensland University of Technology, Brisbane, Australia

Abstract
A modal approach is proposed for dynamic analysis of concrete arch dam-reservoir systems in frequency domain. The technique relies on mode shapes extracted by considering the symmetric parts of total mass and stiffness matrices. Based on this method, a previously developed program is modified, and the response of Morrow Point arch dam is studied for various conditions. The method is proved to be very effective and it is an extremely convenient modal technique for dynamic analysis of concrete arch dams.

Key Words
decoupled modal approach; concrete arch dams; dynamic analysis.

Address
Civil Engineering Department, Amirkabir University, Tehran, Iran

Abstract
In this study, a complete analysis of soil-structure interaction problems is presented which includes a modelling of the near surrounding of the building (near-field) and a special description of the wave propagation process in larger distances (far-field). In order to reduce the computational effort which can be very high for time domain analysis of wave propagation problems, a special approach based on similarity transformation of the infinite domain on the near-field/far-field interface is applied for the wave radiation of the far-field. The near-field is discretised with standard Finite Elements, which also allows to introduce non-linear material behaviour. In this paper, a new approach to calculate the involved convolution integrals is presented. This approximation in time leads to a dramatically reduced computational effort for long simulation times, while the accuracy of the method is not affected. Finally, some benchmark examples are presented, which are compared to a coupled Finite Element/Boundary Element approach. The results are in excellent agreement with those of the coupled Finite Element/Boundary Element procedure, while the accuracy is not reduced. Furthermore, the presented approach is easy to incorporate in any Finite Element code, so the practical relevance is high.

Key Words
soil-structure interaction; time domain; finite element method; scaled boundary finite element method; coupled analysis.

Address
Institute of Applied Mechanics, Technical Univ. of Braunschweig, Spielmannstr. 11, D-38106 Braunschweig,
Germany

Abstract
Effective beam width models are commonly used to obtain the lateral stiffness of flat plate structures. In these models, an effective beam width is defined as the width when the flexural stiffness of the beam element equals the slab stiffness. In this present study, a method to obtain effective beam widths that considers the effects of connection geometry and slab cracking is analytically proposed. The rectangularity of the vertical member for the connection geometry and the combined effects of creep and shrinkage for the slab cracking are considered. The results from the proposed method are compared with experimental results from a test structure having nine slab-column connections.

Key Words
effective beam width; elastic width; stiffness reduction; connection geometry; slab cracking; reinforced concrete; flat plate structure.

Address
Jung-Wook Choi; Department of Civil & Environmental Engineering, University of Alberta, 3-059 Markin/CNRL Natural Resources Engineering Facility, Edmonton AB T6G 2W2, Canada
Jin-Gyu Song; Division of Architecture, Chonnam National University, 300 Yong-Bong Dong, 500-757 Gwangju, Korea

Abstract
In order to consider the modified seismic response of framed structures in the presence of masonry infills, proper models have to be formulated. Because of the complexity of the problem, a careful definition of an equivalent diagonal pin-jointed strut, able to represent the horizontal force-interstorey displacement cyclic law of the actual infill, may be a solution. In this connection the present paper, continuing a previous work in which a generalised criterion for the determination of the ideal cross-section of the equivalent strut was formulated, analizes some models known in literature for the prediction of the lateral cyclic behaviour discussing their field of validity. As a support of the discussion, the results of an experimental investigation involving single story-single bay infilled reinforced concrete. Frames under vertical and lateral loads with different kind of infill (actually not yet so much investigated) are presented. Finally, an improvement of a model known in the literature is proposed, taking the results of the experimental tests before mentioned into account.

Key Words
infilled frames; masonry infill; stiffening effect; hysteretic behaviour; simplified model; equivalent strut.

Address
Dipartimento di Ingegneria Strutturale e Geotecnica, Universita di Palermo, Viale delle Scienze, 90128 - Palermo, Italy


Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2024 Techno-Press ALL RIGHTS RESERVED.
P.O. Box 33, Yuseong, Daejeon 34186 Korea, Email: info@techno-press.com