Techno Press
Tp_Editing System.E (TES.E)
Login Search


sem
 
CONTENTS
Volume 50, Number 5, June10 2014
 

Abstract
.

Key Words
.

Address


Abstract
Gel materials have recently gained more attention due to its unique capability of large and reversible volumetric changes. This study explores the possibility of mimicking the pattern formation of certain natural fruits during their growing process and leaves during drying processes through the swelling and de-swelling of gel materials. This will hopefully provide certain technical explanations on the morphology of fruits and plants. We adopt the inhomogeneous field gel theory to predict the deformation configurations of gel structures to describe the morphology of natural fruits and plants. The growing processes of apple and capsicum are simulated by imposing appropriate boundary conditions and field loading via varying the chemical potential from their immature to mature stages. The drying processes of three types of leaves with different vein structures are also investigated. The simulations lead to promising results and demonstrate that pattern formation of fruits and plants may be described from mechanical perspective by the behavior of gel materials based on the inhomogeneous field theory.

Key Words
gel materials; inhomogeneous field theory; numerical simulation; pattern formation

Address
Li Chen, Yang Zhang, Somsak Swaddiwudhipong : Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore


Abstract
Expressions for determining the value of the impact force as reported in the literature and incorporated into code provisions are essentially quasi-static forces for emulating deflection. Quasi-static forces are not to be confused with contact force which is generated in the vicinity of the point of contact between the impactor and target, and contact force is responsible for damage featuring perforation and denting. The distinction between the two types of forces in the context of impact actions is not widely understood and few guidelines have been developed for their estimation. The value of the contact force can be many times higher than that of the quasi-static force and lasts for a matter of a few milli-seconds whereas the deflection of the target can evolve over a much longer time span. The stiffer the impactor the shorter the period of time to deliver the impulsive action onto the target and consequently the higher the peak value of the contact force. This phenomenon is not taken into account by any contemporary codified method of modelling impact actions which are mostly based on the considerations of momentum and energy principles. Computer software such as LS-DYNA has the capability of predicting contact force but the dynamic stiffness parameters of the impactor material which is required for input into the program has not been documented for debris materials. The alternative, direct, approach for an accurate evaluation of the damage potential of an impact scenario is by physical experimentation. However, it can be difficult to extrapolate observations from laboratory testings to behaviour in real scenarios when the underlying principles have not been established. Contact force is also difficult to measure. Thus, the amount of useful information that can be retrieved from isolated impact experiments to guide design and to quantify risk is very limited. In this paper, practical methods for estimating the amount of contact force that can be generated by the impact of a fallen debris object are introduced along with the governing principles. An experimental-calibration procedure forming part of the assessment procedure has also been verified.

Key Words
quasi-static force; contact force; material dynamic stiffness; impact action; fallen debris

Address
Jing Sun, Nelson Lam, Lihai Zhang : Department of Infrastructure Engineering, University of Melbourne, Parkville, VIC, Australia
Emad Gad and Dong Ruan : Faculty of Engineering & Industrial Sciences, Swinburne University of Technology, Hawthorn, VIC, Australia

Abstract
When the periodic cellular structure is loaded or swelling beyond the critical value, the structure may undergo a pattern transformation owing to the local elastic instabilities, thus leading to structural collapse and the structure changing to a new configuration. Based on this deformation-triggered pattern, we have proposed the novel composite gel materials. This designed material is a type of architectural material possessing special mechanical properties. In this study, the mechanical behavior of the composite gel periodic structure with various gel inclusions is studied further through numerical simulations. When pattern transformation occurs, it results in a different elastic relationship compared with the material at untransformed state. Based on the obtained nominal stress versus nominal strain behavior, the Poisson‟s ratio and corresponding deformed structure patterns, we investigate the performance of designed composite materials and the effects of the uniformly distributed gel inclusions on composite materials. A better understanding of the characteristics of these composite gel materials is a key to develop its potential applications on new soft machines.

Key Words
periodic structure; gel materials; inhomogeneous field theory; numerical simulation; pattern transformation

Address
Jianying Hu, Yuhao He, Jincheng Lei, Zishun Liu : International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structure, Xi

Abstract
Because the elevated temperature degrades the mechanical properties of materials used in containments, the global behavior of containments subjected to the internal pressure under high temperature is remarkably different from that subjected to the internal pressure only. This paper concentrates on the nonlinear finite element analyses of the nuclear power plant containment structures, and the importance for the consideration of the elevated temperature effect has been emphasized because severe accident usually accompanies internal high pressure together with a high temperature increase. In addition to the consideration of nonlinear effects in the containment structure such as the tension stiffening and bond-slip effects, the change in material properties under elevated temperature is also taken into account. This paper, accordingly, focuses on the three-dimensional nonlinear analyses with thermal effects. Upon the comparison of experiment data with numerical results for the SNL 1/4 PCCV tested by internal pressure only, threedimensional analyses for the same structure have been performed by considering internal pressure and temperature loadings designed for two kinds of severe accidents of Saturated Station Condition (SSC) and Station Black-out Scenario (SBO). Through the difference in the structural behavior of containment structures according to the addition of temperature loading, the importance of elevated temperature effect on the ultimate resisting capacity of PCCV has been emphasized.

Key Words
1/4 PCCV; PSC structure; un-bonded tendon; nonlinear behavior; thermal loading

Address
Hyo-Gyoung Kwak and Yangsu Kwon : Department of Civil Engineering, Korean Advanced Institute for Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea

Abstract
Creep and shrinkage behaviour of an ultra lightweight cement composite (ULCC) up to 450 days was evaluated in comparison with those of a normal weight aggregate concrete (NWAC) and a lightweight aggregate concrete (LWAC) with similar 28-day compressive strength. The ULCC is characterized by low density < 1500 kg/m3 and high compressive strength about 60 MPa. Autogenous shrinkage increased rapidly in the ULCC at early-age and almost 95% occurred prior to the start of creep test at 28 days. Hence, majority of shrinkage of the ULCC during creep test was drying shrinkage. Total shrinkage of the ULCC during the 450-day creep test was the lowest compared to the NWAC and LWAC. However, corresponding total creep in the ULCC was the highest with high proportion attributed to basic creep (

Key Words
cement composite; concrete; creep coefficient; model; shrinkage; ultra lightweight

Address
Kok-Seng Chia : Nautic Group Pte Ltd, 300 Beach Road #20-06, The Concourse, 199555, Singapore
Xuemei Liu : School of Civil Engineering and Built Environment, Queensland University of Technology, 2 George St, Brisbane, QLD, Australia
Jat-Yuen Richard Liew and Min-Hong Zhang : Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore

Abstract
Wind fragility analysis provides a quantitative instrument for delineating the safety performance of civil structures under hazardous wind loading conditions such as cyclones and tornados. It has attracted and would be expected to continue to attract intensive research spotlight particularly in the nowadays worldwide context of adapting to the changing climate. One of the challenges encumbering efficacious assessment of the safety performance of existing civil structures is the possible incompleteness of the structural appraisal data. Addressing the issue of the data missingness, the study presented in this paper forms a first attempt to investigate the feasibility of using the expectation-maximization (EM) algorithm and Bayesian techniques to predict the wind fragilities of existing civil structures. Numerical examples of typical linear or hysteretic shear frames are introduced with the wind loads derived from a widely used power spectral density function. Specifically, the application of the maximum a posteriori estimates of the distribution parameters for the story stiffness is examined, and a surrogate model is developed and applied to facilitate the nonlinear response computation when studying the fragilities of the hysteretic shear frame involved.

Key Words
wind fragility analysis; hysteresis; missing data; EM algorithm; Bayesian statistics; maximum a posteriori estimation; surrogate model

Address
Vincent Z. Wang and John D. Ginger : School of Engineering and Physical Sciences, James Cook University, Townsville, Queensland 4811, Australia

Abstract
A numerical method, using a special mixed finite element associated with the virtual crack extension technique, has been developed to evaluate the energy release rate for kinking cracks. The element is two dimensional 7-node mixed finite element with 5 displacement nodes and 2 stress nodes. The mixed finite element ensures the continuity of stress and displacement vectors on the coherent part and the free edge effect. This element has been formulated starting from a parent element in a natural plane with the aim to model different types of cracks with various orientations. Example problems with kinking cracks in a homogeneous material and bimaterial are presented to assess the computational accuracies.

Key Words
mixed finite element; kinking crack; energy release rate; virtual crack extension technique; bimaterial

Address
Bouziane Salah, Bouzerd Hamoudi, Boulares Noureddine : Department of Civil Engineering, University of 20 August 1955 Skikda, Skikda, Algeria
Guenfoud Mohamed : Laboratory of Civil Engineering and Hydraulics, University of Guelma, Guelma, Algeria

Abstract
A design method of second generation wavelet (SGW)-based multivariable finite elements is proposed for static and vibration beam analysis. An important property of SGWs is that they can be custom designed by selecting appropriate lifting coefficients depending on the application. The SGW-based multivariable finite element equations of static and vibration analysis of beam problems with two and three kinds of variables are derived based on the generalized variational principles. Compared to classical finite element method (FEM), the second generation wavelet-based multivariable finite element method (SGWMFEM) combines the advantages of high approximation performance of the SGW method and independent solution of field functions of the MFEM. A multiscale algorithm for SGW-MFEM is presented to solve structural engineering problems. Numerical examples demonstrate the proposed method is a flexible and accurate method in static and vibration beam analysis.

Key Words
second generation wavelet; multivariable finite element method; generalized variational principles; multiscale structural analysis

Address
Youming Wang, Qing Wu and Wenqing Wang : School of Automation, Xi

Abstract
The intentional buckling design of micro-films has various potential applications in engineering. The buckling amplitude and critical strain of micro-films are the crucial parameters for the buckling design. In the reported studies, the film parameters were regarded as deterministic. However, the geometrical and physical parameters uncertainty of micro-films due to manufacturing becomes prominent and needs to be considered. In the present paper, the probabilistic nonlinear buckling analysis of micro-films with uncertain parameters is proposed for design accuracy and reliability. The nonlinear differential equation and its asymptotic solution for the buckling micro-film with nominal parameters are firstly established. The mean values, standard deviations and variation coefficients of the buckling amplitude and critical strain are calculated by using the probability densities of uncertain parameters such as the film span length, thickness, elastic modulus and compressive force, to reveal the effects of the film parameter uncertainty on the buckling deformation. The results obtained illustrate the probabilistic relation between buckling deformation and uncertain parameters, and are useful for accurate and reliable buckling design in terms of probability.

Key Words
probability and statistics; buckling; thin film; uncertainty parameters; nonlinearity

Address
Zuguang Ying, Yong Wang : Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
Zefei Zhu : School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China


Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2017 Techno-Press
P.O. Box 33, Yuseong, Daejeon 34186 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: info@techno-press.com