Techno Press
Tp_Editing System.E (TES.E)
Login Search
You logged in as

sem
 
CONTENTS
Volume 67, Number 6, September25 2018
 


Abstract
Architectural fabrics membranes have not only the structural performance but also act as an efficient cladding to cover large areas. Because of the direct relationship between form and force distribution in tension membrane structures, form-finding procedure is an important issue. Ideally, once the optimal form is found, a uniform pre-stressing is applied to the fabric which takes the form of a minimal surface. The force density method is one of the most efficient computational form-finding techniques to solve the initial equilibrium equations. In this method, the force density ratios of the borders to the membrane is the main parameter for shape-finding. In fact, the shape is evolved and improved with the help of the stress state that is combined with the desired boundary conditions. This paper is evaluated the optimum amount of this ratio considering the curvature of the flexible boarders for structural configurations, i.e., hypar and conic membranes. Results of this study can be used (in the absence of the guidelines) for the fast and optimal design of fabric structures.

Key Words
tension membranes; force density; curvature; saddle shaped; cone shaped; fabric

Address
H. Asadi:
1) Department of Civil Engineering, K.N.Toosi University of Technology, Iran
2) Institute for Metal and Lightweight structures, University of Duisburg-Essen, Essen, Germany
M. A. Hariri-Ardebili:
1) Department of Civil Engineering, University of Colorado, Boulder, USA
2) X-Elastica LLC, Boulder, Colorado, USA
M. Mirtaheri and A. P. Zandi: Department of Civil Engineering, K.N.Toosi University of Technology, Iran

Abstract
This research article reported the nonlinear finite solutions of the nonlinear flexural strength and stress behaviour of nano sandwich graded structural shell panel under the combined thermomechanical loading. The nanotube sandwich structural model is derived mathematically using the higher-order displacement polynomial including the full geometrical nonlinear strain-displacement equations via Green-Lagrange relations. The face sheets of the sandwich panel are assumed to be carbon nanotube-reinforced polymer composite with temperature dependent material properties. Additionally, the numerical model included different types of nanotube distribution patterns for the sandwich face sheets for the sake of variable strength. The required equilibrium equation of the graded carbon nanotube sandwich structural panel is derived by minimizing the total potential energy expression. The energy expression is further solved to obtain the deflection values (linear and nonlinear) via the direct iterative method in conjunction with finite element steps. A computer code is prepared (MATLAB environment) based on the current higher-order nonlinear model for the numerical analysis purpose. The stability of the numerical solution and the validity are verified by comparing the published deflection and stress values. Finally, the nonlinear model is utilized to explore the deflection and the stresses of the nanotube-reinforced (volume fraction and distribution patterns of carbon nanotube) sandwich structure (different core to face thickness ratios) for the variable type of structural parameter (thickness ratio, aspect ratio, geometrical configurations, constraints at the edges and curvature ratio) and unlike temperature loading.

Key Words
FG-CNT; HSDT; FEM; nonlinear deflection; uniform thermal environment; temperature depended properties

Address
Kulmani Mehar and Subrata K. Panda: Department of Mechanical Engineering, National Institute of Technology Rourkela, 769008, Odisha, India

Abstract
Masonry walls are of a complex (anisotropic) structure in terms of their mechanical properties. The mechanical properties of the walls are affected by the properties of the materials used in wall construction, joint thickness and the type of masonry bond. The carried-out studies, particularly in the seismic zones, have revealed that the most of the conventional masonry walls were constructed without considering any engineering approach. Along with that, large-scale damages were detected on such structural elements after major earthquake(s), and such damages were commonly occurred at the brick-joint interfaces. The aim of this study was to investigate the effect of joint thickness and also type of mortar on the mechanical behavior of the masonry walls. For this aim, the brick masonry walls were constructed through examination of both the literature and the conventional masonry walls. In the construction process, a single-type of brick was combined with two different types of mortar: cement mortar and hydraulic lime mortar. Three different joint thicknesses were used for each mortar type; thus, a total of six masonry walls were constructed in the laboratory. The mechanical properties of brick and mortars, and also of the constructed walls were determined. As a conclusion, it can be stated that the failure mechanism of the brick masonry walls differed due to the mechanical properties of the mortars. The use of bed joint thickness not less than 20 mm is recommended in construction of conventional masonry walls in order to maintain the act of brick in conjunction with mortar under load.

Key Words
masonry wall; mortar; joint thickness; mechanical behaviour

Address
Basak Zengin: Graduate School of Natural and Applied Sciences, Yildiz Technical University, Turkey
Burak Toydemir: Istanbul Gelisim University, Turkey
Serhan Ulukaya, Didem Oktay, Nabi Yuzer and Ali Kocak: Department of Civil Engineering, Yildiz Technical University, Turkey

Abstract
Elevated water tanks are inverted pendulum type structures where drift limit is an important criterion for seismic design and performance evaluation. Explicit drift criteria for elevated water tanks are not available in the literature. In this study, probabilistic approach is used to determine maximum drift limit for damage state of yielding and damage state of collapse for the elevated water tanks supported on RC frame staging. The two damage states are defined using results of incremental dynamic analysis wherein a total of 2160 nonlinear time history analyses are performed using twelve artificial spectrum compatible ground motions. Analytical fragility curves are developed using two-parameter lognormal distribution. The maximum allowable drifts corresponding to yield and collapse level requirements are estimated for different tank capacities. Finally, a single fragility curve is developed which provides maximum drift values for the different probability of damage. Further, for rational consideration of the uncertainties in design, three confidence levels are selected and corresponding drift limits for damage states of yielding and collapse are proposed. These values of maximum drift can be used in performance-based seismic design for a particular damage state depending on the level of confidence.

Key Words
incremental dynamic analysis; fragility analysis; elevated water tanks; drift limits; frame staging

Address
Suraj O. Lakhade, Ratnesh Kumar and Omprakash R. Jaiswal: Department of Applied Mechanics, Visvesvaraya National Institute of Technology, Nagpur-440 010, India

Abstract
In this study, the acceleration vector in each time step is assumed to be a mth order time polynomial. By using the initial conditions, satisfying the equation of motion at both ends of the time step and minimizing the square of the residual vector, the m+3 unknown coefficients are determined. The order of accuracy for this approach is m+1, and it has a very low dispersion error. Moreover, the period error of the new technique is almost zero, and it is considerably smaller than the members of the Newmark method. The proposed scheme has an appropriate domain of stability, which is greater than that of the central difference and linear acceleration techniques. The numerical tests highlight the improved performance of the new algorithm over the fourth-order Runge-Kutta, central difference, linear and average acceleration methods.

Key Words
high accuracy; time integration scheme; nonlinear analysis; period error; stability

Address
Mohammad Rezaiee-Pajand, S.A.H. Esfehani and Mahdi Karimi-Rad: Department of Civil Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract
This paper deals with the maximization of the critical buckling load of simply supported antisymmetric angle-ply plates resting on Pasternak foundation subjected to compressive loads using teaching learning based optimization method (TLBO). The first order shear deformation theory is used to obtain governing equations of the laminated plate. In the present optimization problem, the objective function is to maximize the buckling load factor and the design variables are the fibre orientation angles in the layers. Computer programming is developed in the MATLAB environment to estimate optimum stacking sequences of laminated plates. A comparison also has been performed between the TLBO, genetic algorithm (GA) and differential evolution algorithm (DE). Some examples are solved to show the applicability and usefulness of the TLBO for maximizing the buckling load of the plate via finding optimum stacking sequences of the plate. Additionally, the influences of different number of layers, plate aspect ratios, foundation parameters and load ratios on the optimal solutions are investigated.

Key Words
laminated composite plates; Pasternak foundation; optimization; TLBO; buckling

Address
Umut Topal: Department of Civil Engineering, Faculty of Technology, Karadeniz Technical University, Trabzon, Turkey
Trung Vo-Duy:
1) Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
2) Faculty of Civil Engineering Ton Duc Thang University, Ho Chi Minh City, Vietnam
Tayfun Dede: Department of Civil Engineering, Karadeniz Technical University, Trabzon, Turkey
Ebrahim Nazarimofrad: Department of Civil Engineering, Bu Ali Sina University, Hamedan, Iran

Abstract
The paper describes the development of a two-dimensional (2D) co-rotational nonlinear beam finite element that includes advanced path-following capabilities for detecting bifurcation instability in elasto-plasticity of steel elements subjected to fire without introducing imperfections. The advantage is twofold: i) no need to assume the magnitude of the imperfections and consequent reduction of the model complexity; ii) the presence of possible critical points is checked at each converged time step based on the actual load and stiffness distribution in the structure that is affected by the temperature field in the elements. In this way, the buckling modes at elevated temperature, that may be different from the ones at ambient temperature, can be properly taken into account. Moreover, an improved displacement predictor for estimating the displacement field allowed significant reduction of the computational cost. A co-rotational framework was exploited for describing the beam kinematic. In order to highlight the potential practical implications of the developed finite element, a parametric analysis was performed to investigate how the beam element compares both with the EN1993-1-2 buckling curve and with experimental tests on axially compressed steel members. Validation against experimental data and numerical outcomes obtained with commercial software is thoroughly described.

Key Words
branch-switching procedure; path-following technique; instability analysis; flexural buckling; co-rotational formulation; steel structures; fire; geometrical imperfections

Address
Andrea Morbioli and Nicola Tondini: Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123, Trento, Italy
Jean-Marc Battini: Department of Civil and Architectural Engineering, KTH, Royal Institute of Technology, Brinellvagen 23, 10044 Stockholm, Sweden

Abstract
In this paper, we introduce a new framework for running the finite element (FE) packages inside an online Loop together with MATLAB. Contrary to the Hardware-in-the-Loop techniques (HiL), in the proposed Software-in-the-Loop framework (SiL), the FE package represents a simulation platform replicating the real system which can be out of access due to several strategic reasons, e.g., costs and accessibility. Practically, SiL for sophisticated structural design and multi-physical simulations provides a platform for preliminary tests before prototyping and mass production. This feature may reduce the new product\'s costs significantly and may add several flexibilities in implementing different instruments with the goal of shortlisting the most cost-effective ones before moving to real-time experiments for the civil and mechanical systems. The proposed SiL interconnection is not limited to ABAQUS as long as the host FE package is capable of executing user-defined commands in FORTRAN language. The focal point of this research is on using the compiled FORTRAN subroutine as a messenger between ABAQUS/CAE kernel and MATLAB Engine. In order to show the generality of the proposed scheme, the limitations of the available SiL schemes in the literature are addressed in this paper. Additionally, all technical details for establishing the connection between FEM and MATLAB are provided for the interested reader. Finally, two numerical sub-problems are defined for offline and online post-processing, i.e., offline optimization and closed-loop system performance analysis in control theory.

Key Words
software-in-the-loop; finite element; optimal placement; structural optimization; vibration control

Address
Atta Oveisi, T. Arriessa Sukhairi and Tamara Nestorovic: Mechanics of Adaptive Systems, Institute of Computational Engineering, Ruhr-Universitat Bochum, Universitätsstr. 150, 44801 Bochum, Germany


Abstract
The Dynamic equations in the polar coordinates are drawn out using the MLPG method for the non-symmetric FG cylindrical shell. To simulate the mechanical properties of FGM, the nonlinear volume fractions for radial direction are used. The shape function applied in this paper is a form of the radial basis functions, by using this function all the requirements for an effective and suitable shape function are established. Hence in this study, the multiquadrics (MQ) radial basis functions are exploited as the shape function governing the problem. The MLPG method is combined with the the Newmark time approximation scheme to solve dynamic equations in the time domain. The obtained results by the MLPG method to be verified are compared with the analytical solution and the FEM. The obtained results through the MLPG method show a good agreement in comparison to other results and the MLPG method has high accuracy for dynamic analysis of the non-symmetric FG cylindrical shell. To demonstrate the capability of the present method to dynamic analysis of the non-symmetric FG cylindrical shell, it is analyzed dynamically with different volume fraction exponents under harmonic and rectangular shock loading. The present method shows high accuracy, efficiency and capability to dynamic analysis of the non-symmetric FG cylindrical shell with nonlinear grading patterns.

Key Words
MLPG; cylindrical sell; FGM; dynamic analysis; volume fraction

Address
Yaser Sadeghi Ferezghi and Mohamad R. Sohrabi: Department of Civil Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran
Seyed M. MosaviNezhad: Department of Civil Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran

Abstract
The effect of earthquake induced torsion, due to mass eccentricities, is investigated with the objective of providing practical design guidelines for minimizing the torsional response of building structures. Current code provisions recommend performing three dimensional static or dynamic analyses, which involve shifting the centers of the floor masses from their nominal positions to what is called an accidental eccentricity. This procedure however may significantly increase the design cost of multistory buildings, due to the numerous possible spatial combinations of mass eccentricities and it is doubtful whether such a cost would be justifiable. This paper addresses this issue on a theoretical basis and investigates the torsional response of asymmetric multistory buildings in relation to their behavior when all floor masses lie on the same vertical line. This approach provides an insight on the overall seismic response of buildings and reveals how the torsional response of a structure is influenced by an arbitrary spatial combination of mass eccentricities. It also provides practical guidelines of how a structural configuration may be designed to sustain minor torsion, which is the main objective of any practicing engineer. A parametric study is presented on 9-story common building types having a mixed-type lateral load resisting system (frames, walls, coupled wall bents) and representative heightwise variations of accidental eccentricities.

Key Words
earthquake engineering; structural design; dynamics; mass eccentricity; modal analysis; optimum torsion axis

Address
George K. Georgoussis and Anna Mamou: Department of Civil Engineering Educators, School of Pedagogical and Technological Education (ASPETE), N. Heraklion 14121, Attica, Greece



Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2024 Techno-Press ALL RIGHTS RESERVED.
P.O. Box 33, Yuseong, Daejeon 34186 Korea, Email: info@techno-press.com