Techno Press
Tp_Editing System.E (TES.E)
Login Search


was
 
CONTENTS
Volume 7, Number 4, July 2004
 

Abstract
he tuned liquid damper (TLD) is increasingly being used as an economical and effective vibration absorber. It consists of a water tank having the fundamental sloshing fluid frequency tuned to the natural frequency of the structure. In order to perform efficiently, the TLD must possess a certain amount of inherent damping. This can be achieved by placing screens inside the tank. The current study experimentally investigates the behaviour of a TLD equipped with damping screens. A series of shake table tests are conducted in order to assess the effect of the screens on the free surface motion, the base shear forces and the amount of energy dissipated. The variation of these parameters with the level of excitation is also studied. Finally, an amplitude dependent equivalent tuned mass damper (TMD), representing the TLD, is determined based on the experimental results. The dynamic characteristics of this equivalent TMD, in terms of mass, stiffness and damping parameters are determined by energy equivalence. The above parameters are expressed in terms of the base excitation amplitude. The parameters are compared to those obtained using linear small amplitude wave theory. The validity of this nonlinear model is examined in the companion paper.

Key Words
tuned liquid damper; TLD; vibration absorber; tuned mass damper; sloshing; nonlinear; control; dynamic damping.

Address
Department of Civil and Environmental Engineering, University of Western Ontario, London, Ontario, N6A 5B9 Canada

Abstract
The current study reports the results of an experimental program conducted on a structure fitted with a liquid damper (TLD) and subjected to harmonic excitation. Screens were placed inside the TLD to achieve the required inherent damping. In the first part of the study, reduced scale models of the building-TLD systems were tested under two levels of excitation. The efficiency of the damper was assessed by evaluating the effective damping provided to the structure and comparing it to the optimum effective damping value, provided by a linear tuned mass damper (TMD). An extensive parametric study was then conducted for one of the three models by varying both the excitation amplitude and the tuning ratio, defined as the ratio of the TLD sloshing frequency to the natural frequency of the structure. The effectiveness and robustness of a TLD with screens were assessed. Results indicate that the TLD can be tuned to achieve a robust performance and that its efficiency is not significantly affected by the level of excitation. Finally, the equivalent amplitude dependent TMD model, developed in the companion paper is validated using the system test results.

Key Words
tuned liquid damper; TLD; vibration absorber; tank; screens; sloshing water; robustness; efficiency; tuned mass damper; TMD.

Address
Department of Civil and Environmental Engineering, University of Western Ontario,rnLondon, Ontario, N6A 5B9 Canada

Abstract
he effects of a class of nonlinear Tuned Mass Dampers on the aeroelastic behavior of SDOF systems are investigated. Unlike classical linear TMDs, nonlinear constitutive laws of the internal damping acting between the primary oscillator and the TMD are considered, while the elastic properties are keept linear. The perturbative Multiple Scale Method is applied to derive a set of bifurcation equations in the amplitude and phase and a parametric analysis is performed to describe the postcritical scenario of the system. Both cubic- and van der Pol-type dampings are considered and the dependence of the limit-cycle amplitudes on the system parameters is studied. These new results, compared with the previously obtained bifurcation scenario of a SDOF aeroelastic oscillator equipped with a linear TMD, show a detrimental effect on the maximum limit-cycle amplitude reduction of the nonlinear TMD. However, the analyses evidence that in the parameter region away from the perfect tuning condition the nonlinear connection can be used to tune the system with an enhancement of the limit-cycle amplitude reduction.

Key Words
structural control; wind engineering; nonlinear oscillations; bifurcations; post-critical behavior; perturbation methods.

Address
Dipartimento di Ingegneria delle Strutture, delle Acque e del Terreno, Universita di L

Abstract
This paper presents some fundamental results on the dynamics of the periodic Karman wake behind a circular cylinder. The wake is treated like a dynamical system. External forcing is then introduced and its effect investigated. The main result obtained is the following. Perturbation of the wake, by controlled cylinder oscillations in the flow direction at a frequency equal to the Karman vortex shedding frequency, leads to instability of the Karman vortex structure. The resulting wake structure oscillates at half the original Karman vortex shedding frequency. For higher frequency excitation the primary pattern involves symmetry breaking of the initially shed symmetric vortex pairs. The Karman shedding phenomenon can be modeled by a nonlinear oscillator. The symmetrical flow perturbations resulting from the periodic cylinder excitation can also be similarly represented by a nonlinear oscillator. The oscillators represent two flow modes. By considering these two nonlinear oscillators, one having inline shedding symmetry and the other having the Karman wake spatio-temporal symmetry, the possible symmetries of subsequent flow perturbations resulting from the modal interaction are determined. A theoretical analysis based on symmetry (group) theory is presented. The analysis confirms the occurrence of a period-doubling instability, which is responsible for the frequency halving phenomenon observed in the experiments. Finally it is remarked that the present findings have important implications for vortex shedding control. Perturbations in the inflow direction introduce

Key Words
vortex shedding; period-doubling; wake control; spatio-temporal symmetry; amplitude equations.

Address
BWC / AECL / NSERC Chair of Fluid-Structure Interaction, Department of Mechanical Engineering, Ecole Polytechnique de Montreal, P.O. Box 6079, Station A Montreal, QC, H3C 3A7, Canada

Abstract
The flutter characteristics of long span bridges are discussed from the point of the unsteady pressure distribution on bridge deck surface during heaving/torsional vibration related to the aerodynamic derivatives. In particular, it is explained that the coupling terms, which consist of A1* and H3*, play a substantial role on the coupled flutter, in comparison with the flutter characteristics of various structural sections. Also the effect of the torsional/heaving frequency ratio of bridge structures on the flutter instability is discussed from the point of the coupling effect between heaving and torsional vibrations.

Key Words
flutter stabilization; a super-long span bridge; A1* or/and H3* control; unsteady pressure characteristics; two-separate box girders with a vertical plate.

Address
Department of Civil and Earth Resources Engineering, Kyoto University, Yoshida Hon-machi, Sakyo-ku, Kyoto, Japan


Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2017 Techno-Press
P.O. Box 33, Yuseong, Daejeon 34186 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: info@techno-press.com