Techno Press
Techno Press

Steel and Composite Structures   Volume 12, Number 3, March 2012, pages 465-481
Rock mechanics and wellbore stability in Dongfang 1-1 Gas Field in South China Sea
Chuanliang Yan, Jingen Deng, Yuanfang Cheng, Xinjiang Yan, Junliang Yuan and Fucheng Deng

Abstract     [Full Text]
    Thermal effect has great influence on wellbore stability in Dongfang 1-1 (DF 1-1) gas field, a reservoir with high-temperature and high-pressure. In order to analyze the wellbore stability in DF1-1 gas field, the variation of temperature field after drilling was analyzed. In addition, the effect of temperature changing on formation strength and the thermal expansion coefficients of formation were tested. On this basis, a wellbore stability model considering thermal effect was developed and the thermal effect on fracture pressure and collapse pressure was analyzed. One of the main challenges in this gas field is the decreasing temperature of the wellbore will reduce fracture pressure substantially, resulting in the drilling fluid leakage. If the drilling fluid density was reduced, kick or blowout may happen. Therefore, the key of safe drilling in DF1-1 gas field is to predict the fracture pressure accurately.
Key Words
    computing model of temperature field; rock mechanical characteristic; thermal effect; mud circulation; wellbore stability; Dongfang 1-1 gas field; high temperature high pressure
(1) Chuanliang Yan, Yuanfang Cheng:
School of Petroleum Engineering, China University of Petroleum (Huadong), Qingdao, 266580, China;
(2) Chuanliang Yan, Jingen Deng:
State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing, 102249, China;
(3) Xinjiang Yan, Junliang Yuan:
CNOOC Research Institute, Beijing, 100027, China;
(4) Fucheng Deng:
Yangtze University, Jingzhou, 434023, China.

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2019 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: