Techno Press
Techno Press

Steel and Composite Structures   Volume 23, Number 2, February10 2017, pages 161-172
DOI: http://dx.doi.org/10.12989/scs.2017.23.2.161
 
Experimental investigation of novel pre-tightened teeth connection technique for composite tube
Fei Li, Qilin Zhao, Haosen Chen and Longxing Xu

 
Abstract     [Full Text]
    A new composite tube connection method called the pre-tightened teeth connection technique is proposed to improve the composite tube connection efficiency. This paper first introduces the manufacturing process of the proposed technique. It then outlines how the mechanical properties of this technology were tested using four test groups. The factors that influence the load-bearing capacity and damage model of the connection were analyzed, and finally, the transfer load mechanism was investigated. The following conclusions can be obtained from the research results. (1) The new technique improves the compressive connection efficiency by a maximum of 79%, with the efficiency exceeding that of adhesive connections of the same thickness. (2) Changing the depth of teeth results in two types of damage: local compressive damage and shear damage. The bearing capacity can be improved by increasing the depth, length, and number of teeth as well as the pretightening force. (3) The capacity of the technique to transfer high loads is a result of both the relatively high interlaminar shear strength of the pultruded composite and the interlaminar shear strength increase provided by the pre-tightening force. The proposed technique shows favorable mechanical properties, and therefore, it can be extensively applied in the engineering field.
 
Key Words
    composite tube; pre-tightened teeth connection; connection efficiency; influence factors
 
Address
(1) Fei Li:
Institute of Logistics Engineering of PLA, Chongqing 400000, China;
(2) Qilin Zhao:
School of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 21007, China;
(3) Haosen Chen:
Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China;
(4) Longxing Xu:
The First Research Division, General Equipment Department of the PLA, Wuxi 214035, China.
 

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2019 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: technop@chol.com