Techno Press


Steel and Composite Structures   Volume 30, Number 2, January25 2019, pages 109-121
DOI: http://dx.doi.org/10.12989/scs.2019.30.2.109
 
Modeling for the strap combined footings Part II: Mathematical model for design
Juan Antonio Yáñez-Palafox, Arnulfo Luévanos-Rojas, Sandra López-Chavarria and Manuel Medina-Elizondo

 
Abstract     [Full Text]
    This paper presents the second part of the modeling for the strap combined footings, this part shows a mathematical model for design of strap combined footings subject to axial load and moments in two directions to each column considering the soil real pressure acting on the contact surface of the footing for one and/or two property lines of sides opposite restricted, the pressure is presented in terms of an axial load, moment around the axis "X" and moment around the axis "Y" to each column, and the methodology is developed using the principle that the derived of the moment is the shear force. The first part shows the optimal contact surface for the strap combined footings to obtain the most economical dimensioning on the soil (optimal area). The classic model considers an axial load and a moment around the axis "X" (transverse axis) applied to each column, i.e., the resultant force from the applied loads is located on the axis "Y" (longitudinal axis), and its position must match with the geometric center of the footing, and when the axial load and moments in two directions are presented, the maximum pressure and uniform applied throughout the contact surface of the footing is considered the same. A numerical example is presented to obtain the design of strap combined footings subject to an axial load and moments in two directions applied to each column. The mathematical approach suggested in this paper produces results that have a tangible accuracy for all problems and it can also be used for rectangular and T-shaped combined footings.
 
Key Words
    mathematical model for design; strap combined footings; moments; bending shear; punching shear
 
Address
Institute of Multidisciplinary Researches, Autonomous University of Coahuila, Blvd. Revolución No, 151 Ote, CP 27000, Torreón, Coahuila, México.
 

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2019 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: technop@chol.com